Skip to main content
Log in

Design of CNTFET-Based Ternary and Quaternary Magnitude Comparator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel power and energy-efficient carbon nanotube field-effect transistor (CNTFET)-based design of a quaternary magnitude comparator for single and double digits. It also proposes an improved circuit of the ternary single-digit comparator and a novel design of the double-digit ternary comparator. The designs make use of the pass transistor logic and transmission gates, resulting in a more power and energy-efficient design with a lower number of CNTFETs when compared with existing designs. Besides, this paper also proposes a generalized circuit of magnitude comparator for multiple digits. The proposed circuits are simulated in HSPICE using the 32 nm CNTFET model presented by Stanford University. Average power and propagation delays are observed and the power-delay-product (PDP) is calculated in each case. The impact of process parameter variations has been analyzed through Monte Carlo simulation and has been presented in the form of two-dimensional graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included within this article.

References

  1. N.H. Bastani, M.H. Moaiyeri, K. Navi, An energy- and area-efficient approximate ternary adder based on CNTFET switching logic. Circuits Syst. Signal Process. 37(5), 1863–1883 (2018). https://doi.org/10.1007/s00034-017-0627-1

    Article  Google Scholar 

  2. A.K. Dadoria, K. Khare, Design and analysis of low-power adiabatic logic circuits by using CNTFET Technology. Circuits Syst. Signal Process. 38(9), 4338–4356 (2019). https://doi.org/10.1007/s00034-019-01059-4

    Article  Google Scholar 

  3. A. Daraei, S.A. Hosseini, Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics. AEU-Int. J. Electron. C. 105, 145–162 (2019). https://doi.org/10.1016/j.aeue.2019.04.012

    Article  Google Scholar 

  4. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Devices. 54(12), 3195–3205 (2007). https://doi.org/10.1109/TED.2007.909043

    Article  Google Scholar 

  5. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part I: model of the intrinsic channel region. IEEE Trans. Electron Devices. 54(12), 3186–3194 (2007). https://doi.org/10.1109/TED.2007.909030

    Article  Google Scholar 

  6. A. Dhande, V.R. Ghiye, V.T. Ingole, Ternary digital system: concepts and applications. SM Medical Technologies Private Limited. Chapter 5 (September), 131 (2014)

  7. S.A. Ebrahimi, M.R. Reshadinezhad, A. Bohlooli, M. Shahsavari, Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectron. J. 53, 156–166 (2016). https://doi.org/10.1016/j.mejo.2016.04.016

    Article  Google Scholar 

  8. Y.A. Gaidhani, M.N. Kalbande, Design of some useful logic blocks using quaternary algebra. Int. J. Adv. Comput. Netw. Secur. 1(1), 412–417 (2019)

    Google Scholar 

  9. S.A. Hosseini, S. Etezadi, A novel very low-complexity multi-valued logic comparator in nanoelectronics. Circuits Syst. Signal Process. 39(1), 223–244 (2020). https://doi.org/10.1007/s00034-019-01158-2

    Article  Google Scholar 

  10. I. Jahangir, D.M.N. Hasan, M.S. Reza, Design of some quaternary combinational logic blocks using a new logic system, in IEEE Region 10 Annual International Conference, Proceedings/TENCON. 1–6 (2009). https://doi.org/10.1109/TENCON.2009.5396095

  11. A. Lin, G. Wan, J. Deng, H.-S.P. Wong, A quick user guide on stanford university carbon nanotube field effect transistors (CNFET) HSPICE model. v.2.2.1. 1–13 (2009)

  12. S. Lin, Y. Bin Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans Nanotechnol. 10(2), 217–225 (2011). https://doi.org/10.1109/TNANO.2009.2036845

    Article  Google Scholar 

  13. S. Lin, Y.-B. Kim, F. Lombardi, A novel CNTFET-based ternary logic gate design, in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, IEEE (2009), pp. 435–438. https://doi.org/10.1109/MWSCAS.2009.5236063

  14. M.H. Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circuits Devices Syst. 5(4), 285–296 (2011). https://doi.org/10.1049/iet-cds.2010.0340

    Article  MATH  Google Scholar 

  15. M.H. Moaiyeri, K. Navi, O. Hashemipour, Design and evaluation of CNFET-based quaternary circuits. Circuits Syst. Signal Process. 31(5), 1631–1652 (2012). https://doi.org/10.1007/s00034-012-9413-2

    Article  MathSciNet  Google Scholar 

  16. M.H. Moaiyeri, A. Rahi, F. Sharifi, K. Navi, Design and evaluation of energy-efficient carbon nanotube FET-based quaternary minimum and maximum circuits. J. Appl. Res. Technol. 15(3), 233–241 (2017). https://doi.org/10.1016/j.jart.2016.12.006

    Article  Google Scholar 

  17. S.L. Murotiya, A. Gupta, S. Vasishth, Novel design of ternary magnitude comparator using CNTFETs, in 11th IEEE India Conference: Emerging Trends and Innovation in Technology, INDICON 2014. (1), 1–4 (2015). https://doi.org/10.1109/INDICON.2014.7030447.

  18. A. Paul, B. Pradhan, CNTFET-based design of ternary logic gates with interchangeable standard positive and negative ternary output. Eng. Res. Express. 3(3), 35002 (2021). https://doi.org/10.1088/2631-8695/ac0fc6

    Article  Google Scholar 

  19. S. Rani, B. Singh, R. Devi, CNTFET based ternary 1-trit and 2-trit comparators for low power high-performance applications. Trans. Electr. Electron. Mater. 22(6), 734–749 (2021). https://doi.org/10.1007/s42341-021-00292-6

    Article  Google Scholar 

  20. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans Nanotechnol. 4(2), 168–179 (2005). https://doi.org/10.1109/TNANO.2004.842068

    Article  Google Scholar 

  21. Z.T. Sandhie, J.A. Patel, F.U. Ahmed, Investigation of multiple-valued logic technologies for beyond-binary era. ACM Comput Surv (2021). https://doi.org/10.1145/3431230

    Article  Google Scholar 

  22. F. Sharifi, M.H. Moaiyeri, K. Navi, N. Bagherzadeh, Quaternary full adder cells based on carbon nanotube FETs. J Comput Electron. 14(3), 762–772 (2015). https://doi.org/10.1007/s10825-015-0714-0

    Article  Google Scholar 

  23. K. Sridharan, S. Gurindagunta, V. Pudi, Efficient multiternary digit adder design in CNTFET technology. IEEE Trans Nanotechnol. 12(3), 283–287 (2013). https://doi.org/10.1109/TNANO.2013.2251350

    Article  Google Scholar 

  24. B. Srinivasu, K. Sridharan, Carbon nanotube FET-based low-delay and low-power multi-digit adder designs. IET Circuits Devices Syst. 11(4), 352–364 (2017). https://doi.org/10.1049/iet-cds.2016.0013

    Article  Google Scholar 

  25. S. Tabrizchi, F. Sharifi, A.H. Badawy, Z.M. Saifullah, Enabling energy-efficient ternary logic gates using CNFETs, in 2017 IEEE 17th International Conference on Nanotechnology, NANO 2017. 542–547 (2017). https://doi.org/10.1109/NANO.2017.8117467

  26. C. Vudadha, P.P. Sai, V. Sreehari, M.B. Srinivas, CNFET based ternary magnitude comparator, in 2012 International Symposium on Communications and Information Technologies, ISCIT 2012. (1), 942–946 (2012). https://doi.org/10.1109/ISCIT.2012.6381040

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anisha Paul.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Pradhan, B. Design of CNTFET-Based Ternary and Quaternary Magnitude Comparator. Circuits Syst Signal Process 42, 5634–5662 (2023). https://doi.org/10.1007/s00034-023-02380-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02380-9

Keywords

Navigation