Skip to main content
Log in

Microarray Image Lossless Compression Using General Entropy Coders and Image Compression Standards

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Lossless compression is still a challenging task in the case of microarray images. This research proposes two algorithms that aim to improve the lossless compression efficiency for high spatial resolution microarray images using general entropy codecs, namely Huffman and arithmetic coders and the image compression standard JPEG 2000. Using the standards ensures that decoders are available to reassess the images for future applications. Typically, microarray images have a bit-depth of 16. In proposed algorithm 1, every image’s per bit-plane entropy profile is calculated to automatically determine a better threshold T to split the bit-planes into the foreground and background sub-images. T is initially set to 8. However, in algorithm 1, T is updated, balancing the average value of per bit-plane entropies of the segmented sub-images of an image for improved lossless compression results. Codecs are applied individually to the produced sub-images. Proposed algorithm 2 is designed to increase the lossless compression efficiency of any unmodified JPEG 2000-compliant encoder while reducing side information overhead. In this, pixel intensity reindexing and, thereby, changing the histograms of the same segmented sub-images obtained from algorithm 1 are implemented and confirmed to get better JPEG 2000 results in lossless mode than applying it to the original image. The lossless JPEG 2000 compression performance on microarray images is also compared to JPEG-LS in particular. The experiments are carried out to validate the methods on seven benchmark datasets, namely ApoA1, ISREC, Stanford, MicroZip, GEO, Arizona, and IBB. The average first-order entropy of the datasets above is calculated and compared for codecs and better than competitive efforts in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

The associated microarray image datasets access links are found in references [5,6,7,8,9,10,11], respectively.

References

  1. D.A. Adjeroh, Y. Zhang, R. Parthe, On denoising and compression of DNA microarray images. Pattern Recognit. 39(12), 2478–2493 (2006)

    Article  MATH  Google Scholar 

  2. S. Battiato, F. Rundo, A bio-inspired cnn with re-indexing engine for lossless dna microarray compression and segmentation, in 2009 16th IEEE International Conference on Image Processing (IEEE, 2009), pp. 1737–1740

  3. R. Bierman, N. Maniyar, C. Parsons, R. Singh, Mace: lossless compression and analysis of microarray images. Proc. ACM Symp. Appl. Comput. 2006, 167–172 (2006)

    Google Scholar 

  4. N. Faramarzpour, S. Shirani, J. Bondy, Lossless dna microarray image compression, in IEEE Conference on Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2 (IEEE, 2003), pp. 1501–1504

  5. GEO, GEO Dataset. National Center for Biotechnology Information (NCBI). http://www.ncbi.nlm.nih.gov/geo/ (2019). Accessed 15 March 2019

  6. M. Hern, ApoA1 Dataset. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  7. M. Hern, David Galbraith laboratories. Arizona Dataset. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  8. M. Hern, IBB Corpus IBB Genomics Service. Institut de Biotecnologia i Biomedicina (IBB) Dataset. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  9. M. Hern, ISREC Dataset. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  10. M. Hern, MicroZip Dataset. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  11. M. Hern, SMD Dataset. Stanford Yeast Cell-Cycle Regulation Project. https://deic-web.uab.cat/mhernandez/corpora.html (2017). Accessed 10 August (2017)

  12. M. Hern, I. Blanes, J. Serra-Sagrista, M. W. Marcellin et al., A review of dna microarray image compression, in First Int. Conf. Data Compression, Commun. Process. (CCP) (IEEE, 2011), pp. 139–147

  13. M. Hern, J. Munoz Gómez, I. Blanes, M. W. Marcellin, J. Serra Sagrista et al., Dna microarray image coding, in 2012 Data Compression Conference (IEEE, 2012), pp. 32–41

  14. M. Hern, J. Serra Sagrista, Dna microarray image compression, Ph.D dissertation, Universitat Autonoma de Barcelona, https://ddd.uab.cat/pub/tesis/2015/hdl_10803_297706/mhc1de1.pdf (2015). Accessed 11 August (2017)

  15. J. Hua, Z. Xiong, Q. Wu, K. Castleman, Fast segmentation and lossy-to-lossless compression of dna microarray images, in Proceedings of Workshop on Genomic Signal Processing and Statistics, GENSIPS (Citeseer, 2002)

  16. D.A. Huffman, A method for the construction of minimum-redundancy codes. Proc. IRE. 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  17. JBIG, Information Technology-Coded Representation of Picture and Audio Information-Progressive Bi-Level Image Compression. ISO/IEC Standard 11 544 (1993)

  18. JPEG, https://en.wikipedia.org/wiki/JPEG_2000 (2021). Accessed 11 May 2021

  19. JPEG-LS, Information Technology-Lossless and Near-Lossless Compression of Continuous-Tone Still Images. ISO/IEC Standard 14 495-1 (1999)

  20. JPEG-2000, Information Technology-JPEG 2000 Image Coding System. ISO/IEC Standard 15 444-1 (2000)

  21. N. Karimi, S. Samavi, S. Shirani, A. Banaei, E. Nasr-Esfahani, Real-time lossless compression of microarray images by separate compaction of foreground and background. Comput. Stand. Interfaces 39, 34–43 (2015)

    Article  Google Scholar 

  22. B. Koc, Z. Arnavut, D. Sarkar, H. Kocak, Splitting bits for lossless compression of microarray images, in 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT, 2017, 53–56 (2017)

  23. S. Lonardi, Y. Luo, Gridding and compression of microarray images, in Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB) (IEEE, 2004), pp. 122–130

  24. L. M. Matos, A. J. Neves, A. J. Pinho, Compression of microarray images using a binary tree decomposition, in 2014 22nd European Signal Processing Conference (IEEE, 2014), pp. 531–535

  25. A. Neekabadi, S. Samavi, S. Razavi, N. Karimi, S. Shirani, Lossless microarray image compression using region based predictors, in 2007 IEEE International Conference on Image Processing vol. 2. (IEEE, 2007), pp. II–349

  26. NEMA PS3/ISO 12052, Digital Imaging and Communications in Medicine (DICOM) Standard, National Electrical Manufacturers Association, Rosslyn, VA, USA. http://medical.nema.org/ (2021). Accessed 11 May 2021

  27. A.J. Neves, A.J. Pinho, Lossless compression of microarray images, in 2006 IEEE Int. Conf. Image Process. (IEEE, 2006), pp. 2505–2508

  28. A.J. Neves, A.J. Pinho, Lossless compression of microarray images using image-dependent finite-context models. IEEE Trans. Med. Imag. 28(2), 194–201 (2009)

    Article  Google Scholar 

  29. A.J. Pinho, A.R. Paiva, A.J. Neves, On the use of standards for microarray lossless image compression. IEEE Trans. Biomed. Eng. 53(3), 563–566 (2006)

    Article  Google Scholar 

  30. J. Rissanen, G.G. Langdon, Arithmetic coding. IBM J. Res. Dev. 23(2), 149–162 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Rueda, Microarray Image and Data Analysis: Theory and Practice. CRC Press (2018)

  32. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.S. Taubman, M.W. Marcellin, JPEG 2000: Image Compression Fundamentals Standards and Practice (Kluwer Academic Publishers, Boston, 2002)

    Book  Google Scholar 

  34. D. Taubman, Kakadu Software. https://kakadusoftware.com/ (2021). Accessed 11 May (2021)

  35. X. Wang, R.S. Istepanian, Y.H. Song, Application of wavelet modulus maxima in microarray spots recognition. IEEE Trans. Nanobiosci. 2(4), 190–192 (2003)

    Article  Google Scholar 

  36. I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression. Commun. ACM. 30(6), 520–540 (1987)

    Article  Google Scholar 

  37. Q. Xu, J. Hua, Z. Xiong, M.L. Bittner, E.R. Dougherty, The effect of microarray image compression on expression-based classification. Signal Image Video Process. 3(1), 53–61 (2009)

    Article  MATH  Google Scholar 

  38. Y. Zhang, R. Parthe, D. Adjeroh, Lossless compression of DNA microarray images, in 2005 IEEE Computational Systems Bioinformatics Conference (IEEE, August 2005), pp. 128–132

Download references

Funding

The authors do not have any funding received.

Author information

Authors and Affiliations

Authors

Contributions

The submitted manuscript is contributed and written by Steffy Maria Joseph and P. S. Sathidevi monitored the work.

Corresponding author

Correspondence to Steffy Maria Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, S.M., Sathidevi, P.S. Microarray Image Lossless Compression Using General Entropy Coders and Image Compression Standards. Circuits Syst Signal Process 42, 5013–5040 (2023). https://doi.org/10.1007/s00034-023-02347-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02347-w

Keywords

Navigation