Skip to main content
Log in

Coarray Polarization Smoothing for DOA Estimation with Coprime Vector Sensor Arrays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of direction-of-arrival (DOA) estimation of multiple sources using a coprime electromagnetic vector sensor (EMVS) array is addressed. Each EMVS consists of three mutually orthogonal electric dipoles and three mutually orthogonal magnetic loops, all collocated at a single point in space. By exploiting the polarization diversities embedded in the vector sensors, the coarray polarization smoothing (COPS) is presented to increase the degrees of freedom (DOFs) from the polarization coarray domain. In contrast to the widely used spatial smoothing technique, the COPS offers the following insights: (1) it is source polarization-dependent and is proved to offer 20 DOFs at most, (2) it does not reduce the efficient spatial coarray aperture of the coprime array so that it enables the use of all virtual coarray sensors without resorting to the nontrivial sparse recovery or array interpolation operations, and (3) it can be synthesized with the spatial smoothing to get the DOFs multiplied. Finally, the efficacy of the COPS scheme is verified by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K. Adhikari, Beamforming with semi-coprime arrays. J. Acoust. Soc. Am. 145(5), 2841–2850 (2019)

    Google Scholar 

  2. T. Ahmed, X. Zhang, W. Zheng, DOA estimation for coprime EMVS arrays via minimum distance criterion based on PARAFAC analysis. IET Radar Sonar Navig. 13(5), 65–73 (2019)

    Google Scholar 

  3. Y. Cheng, X. Zhang, T. Liu, J. Shi, Z. Liu, P. Hu, X. Li, Coprime array-adaptive beamforming via atomic-norm-based sparse recovery. IET Radar Sonar Navig. 15, 1494–1507 (2021)

    Google Scholar 

  4. S. Chintagunta, P. Palanisamy, 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors. Signal Process. 147, 163–172 (2018)

    MATH  Google Scholar 

  5. G. Di Martino, A. Iodice, Passive beamforming with coprime arrays. IET Radar Sonar Navig. 11(6), 964–971 (2017)

    Google Scholar 

  6. Y. Du, H. Xu, W. Cui, C. Jian, J. Zhang, Adaptive beamforming algorithm for coprime array based on interference and noise covariance matrix reconstruction. IET Radar Sonar Navig. 16, 668–677 (2022)

    Google Scholar 

  7. M. Fu, Z. Zheng, W.-Q. Wang, H.C. So, Coarray interpolation for DOA estimation using coprime EMVS array. IEEE Signal Process. Lett. 28, 548–552 (2021)

    Google Scholar 

  8. Z. Fu, P. Chargé, Y. Wang, Rearranged coprime array to increase degrees of freedom and reduce mutual coupling. Signal Process. 183, 108038 (2021)

    Google Scholar 

  9. J. He, Z. Liu, Computationally efficient two-dimensional direction-of-arrival estimation of electromagnetic sources using the propagator method. IET Radar Sonar Navig. 3(5), 437–448 (2009)

    Google Scholar 

  10. X. Huang, X. Yang, L. Gao, W. Lu, Pseudo noise subspace based DOA estimation for unfolded coprime linear arrays. IEEE Wireless Commun. Lett. 10(10), 2335–2339 (2021)

    Google Scholar 

  11. C. Khatri, C.R. Rao, Solutions to some functional equations and their applications to characterization of probability distributions. Sankhyā. Indian J. Stat. A. 30(2), 167–180 (1968)

    MATH  Google Scholar 

  12. J. Li, Y. Li, X. Zhang, Two-dimensional off-grid DOA estimation using unfolded parallel coprime array. IEEE Commun. Lett. 22(12), 2495–2498 (2018)

    MathSciNet  Google Scholar 

  13. J. Li, R.T. Compton, Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antennas Propag. 39(9), 1376–1383 (1991)

    Google Scholar 

  14. C. Liu, P. P. Vaidyanathan and P. Pal, Coprime coarray interpolation for DOA estimation via nuclear norm minimization, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2639–2642 (2016)

  15. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)

    Google Scholar 

  16. K. Liu, Y.D. Zhang, Coprime array-based DOA estimation in unknown nonuniform noise environment. Digital Signal Process. 79, 66–74 (2018)

    MathSciNet  Google Scholar 

  17. K. Liu, Y.D. Zhang, Coprime array-based robust beamforming using covariance matrix reconstruction technique. IET Commun. 12(17), 2206–2212 (2018)

    MathSciNet  Google Scholar 

  18. S. Liu, Z. Mao, Y.D. Zhang, Y. Huang, Rank minimization-based Toeplitz reconstruction for DOA estimation using coprime array. IEEE Commun. Lett. 25(7), 2265–2269 (2021)

    Google Scholar 

  19. P. Ma, J. Li, F. Xu, X. Zhang, Hole-free coprime array for DOA estimation: augmented uniform co-array. IEEE Signal Process. Lett. 28, 36–40 (2021)

    Google Scholar 

  20. Z. Meng, W. Zhou, Robust adaptive beamforming for coprime array with steering vector estimation and covariance matrix reconstruction. IET Commun. 14(16), 2749–2758 (2020)

    Google Scholar 

  21. S. Miron, N. Le Bihan, J.I. Mars, Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process. 54(4), 1218–1229 (2006)

    MATH  Google Scholar 

  22. A. Nehorai, E. Paldi, Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 42(2), 376–398 (1994)

    Google Scholar 

  23. P. Pal and P. P. Vaidyanathan, Coprime sampling and the MUSIC algorithm, in Proceedings of Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (Sedona, AZ, USA, 2011), pp. 289–294

  24. Y. Pan, G.Q. Luo, Efficient direction-of-arrival estimation via annihilating-based denoising with coprime array. Signal Process. 184, 108061 (2021)

    Google Scholar 

  25. S. Qin, Y. Zhang, M. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    MathSciNet  MATH  Google Scholar 

  26. S. Qin, Y.D. Zhang, M.G. Amin, Improved two-dimensional DOA estimation using parallel coprime arrays. Signal Process. 172, 107428 (2020)

    Google Scholar 

  27. D. Rahamim, J. Tabrikian, R. Shavit, Source localization using vector sensor array in a multipath environment. IEEE Trans. Signal Process. 52(11), 3096–3103 (2004)

    Google Scholar 

  28. A. Raza, W. Liu, Q. Shen, Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 67(8), 2052–2065 (2019)

    MathSciNet  MATH  Google Scholar 

  29. J. L. Rogier, G. Multedo, L. Bertel, V. Baltazart, Ionospheric multi-paths separation with a high resolution direction finding algorithm mapped on an experimental system, in 5th International Conference on HF Radio Systems and Techniques (UK, 1991), pp. 171–121

  30. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984–995 (1989)

    MATH  Google Scholar 

  31. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Google Scholar 

  32. J. Shi, G. Hu, X. Zhang, F. Sun, H. Zhou, Sparsity-based two-dimensional DOA estimation for coprime array: from sum–difference coarray viewpoint. IEEE Trans. Signal Process. 65(21), 5591–5604 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Z. Shi, C. Zhou, Y. Gu, N.A. Goodman, F. Qu, Source estimation using coprime array: a sparse reconstruction perspective. IEEE Sens. J. 17(3), 755–765 (2017)

    Google Scholar 

  34. Z. Tan, Y.C. Eldar, A. Nehorai, Direction of arrival estimation using co-prime arrays: a super resolution viewpoint. IEEE Trans. Signal Process. 62(21), 5565–5576 (2014)

    MathSciNet  MATH  Google Scholar 

  35. M. Wang, A. Nehorai, Coarrays, MUSIC, and the Cramér–Rao bound. IEEE Trans. Signal Process. 65(4), 933–946 (2017)

    MathSciNet  MATH  Google Scholar 

  36. W. Wang, S. Ren, Z. Chen, Unified coprime array with multi-period subarrays for direction-of-arrival estimation. Digital Signal Process. 74, 20–42 (2018)

    MathSciNet  Google Scholar 

  37. X. Wang, Z. Chen, S. Ren, S. Cao, DOA estimation based on the difference and sum coarray for coprime arrays. Digital Signal Process. 69, 22–31 (2017)

    Google Scholar 

  38. X. Wang, Z. Yang, J. Huang, R.C. de Lamare, Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar with coprime arrays. IEEE Trans. Signal Process. 68, 81–96 (2020)

    MathSciNet  MATH  Google Scholar 

  39. X. Wang, Z. Yang, J. Huang, Robust space-time adaptive processing for airborne radar with coprime arrays in presence of gain and phase errors. IET Radar Sonar Nav. 15, 75–84 (2021)

    Google Scholar 

  40. M. Yang, J. Ding, B. Chen, X. Yuan, A multiscale sparse array of spatially spread electromagnetic-vector-sensors for direction finding and polarization estimation. IEEE Access. 6, 9807–9818 (2018)

    Google Scholar 

  41. Z. Zhang, C. Zhou, Y. Gu, J. Zhou, Z. Shi, An IDFT approach for coprime array direction-of-arrival estimation. Digital Signal Process. 94, 45–55 (2019)

    Google Scholar 

  42. W. Zheng, X. Zhang, Y. Wang, J. Shen, B. Champagne, Padded coprime arrays for improved DOA estimation: exploiting hole representation and filling strategies. IEEE Trans. Signal Process. 68, 4597–4611 (2020)

    MathSciNet  MATH  Google Scholar 

  43. W. Zheng, X. Zhang, H. Zhai, Generalized coprime planar array geometry for 2-D DOA estimation. IEEE Commun. Lett. 21(5), 1075–1078 (2017)

    Google Scholar 

  44. W. Zheng, X. Zhang, P. Gong, H. Zhai, DOA estimation for coprime linear arrays: an ambiguity-free method involving full DOFs. IEEE Commun. Lett. 22(3), 562–565 (2018)

    Google Scholar 

  45. Z. Zheng, Y. Huang, W.-Q. Wang, H.C. So, Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process. Lett. 27, 585–589 (2020)

    Google Scholar 

  46. Z. Zheng, M. Fu, W.-Q. Wang, H.C. So, Symmetric displaced coprime array configurations for mixed near- and far-field source localization. IEEE Trans. Antennas Propag. 69(1), 465–477 (2021)

    Google Scholar 

  47. C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, Y.D. Zhang, Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 66(22), 5956–5971 (2018)

    MathSciNet  MATH  Google Scholar 

  48. C. Zhou, Y. Gu, Z. Shi, Y.D. Zhang, Off-grid direction-of-arrival estimation using coprime array interpolation. IEEE Signal Process. Lett. 25(11), 1710–1714 (2018)

    Google Scholar 

  49. C. Zhou, Y. Gu, Y.D. Zhang, Z. Shi, T. Jin, X. Wu, Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 11(11), 1719–1724 (2017)

    Google Scholar 

  50. C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Google Scholar 

  51. M.D. Zoltowski, K.T. Wong, ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Trans. Signal Process. 48(8), 2195–2204 (2000)

    Google Scholar 

  52. M.D. Zoltowski, K.T. Wong, Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Trans. Antennas Propag. 48(8), 1235–1245 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant 61771302.

Appendices

Appendix A: Proof of Theorem 1

Using the following three matrix prosperities given in [11]

$$\begin{aligned}{} & {} {{\varvec{A}}} \odot ({{\varvec{B}}} \odot {{\varvec{C}}}) = ({{\varvec{A}}} \odot {{\varvec{B}}}) \odot {{\varvec{C}}}, \end{aligned}$$
(22)
$$\begin{aligned}{} & {} {{\varvec{U}}}_{P \times Q} ({{\varvec{A}}} \odot {{\varvec{B}}}) = ({{\varvec{B}}} \odot {{\varvec{A}}}), \end{aligned}$$
(23)
$$\begin{aligned}{} & {} ({{\varvec{A}}} \otimes {{\varvec{B}}})({{\varvec{C}}} \odot {{\varvec{D}}}) = {{\varvec{A}}C} \odot {{\varvec{B}}D}, \end{aligned}$$
(24)

we have

$$\begin{aligned} ({{\varvec{U}}}_{6 \times L} \otimes {{\varvec{I}}}_{6L} ) [({{\varvec{Q}}} \odot {{\varvec{C}}})^*\odot ({{\varvec{Q}}} \odot {{\varvec{C}}})]= & {} {{\varvec{U}}}_{6 \times L} ({{\varvec{Q}}}^*\odot {{\varvec{C}}}^*) \odot {{\varvec{I}}}_{6L} ({{\varvec{Q}}} \odot {{\varvec{C}}}) \nonumber \\ {}= & {} ({{\varvec{C}}}^*\odot {{\varvec{Q}}}^*) \odot ({{\varvec{Q}}} \odot {{\varvec{C}}}) \end{aligned}$$
(25)

and

$$\begin{aligned} ({{\varvec{I}}}_6 \otimes {{\varvec{U}}}_{6 \times L^2}) ({{\varvec{C}}}^*\odot {{\varvec{Q}}}^*) \odot ({{\varvec{Q}}} \odot {{\varvec{C}}})= & {} {{\varvec{I}}}_6 {{\varvec{C}}}^*\odot {{\varvec{U}}}_{6 \times L^2}[ ({{\varvec{Q}}}^*\odot {{\varvec{Q}}}) \odot {{\varvec{C}}}] \nonumber \\ {}= & {} ({{\varvec{C}}}^*\odot {{\varvec{C}}}) \odot ({{\varvec{Q}}}^*\odot {{\varvec{Q}}}). \end{aligned}$$
(26)

Let \({{\varvec{P}}} = ({{\varvec{I}}}_6 \otimes {{\varvec{U}}}_{6 \times L^2}) ({{\varvec{U}}}_{6 \times L} \otimes {{\varvec{I}}}_{6\,L})\). The relationship (9) is established.

Appendix B: Proof of Theorem 2

The DOFs obtained from the polarization coarray equal to the rank of \(\bar{{\varvec{C}}}\), which relies on the linear dependence of the polarization coarray steering vector \(\bar{{\varvec{c}}} \triangleq {{\varvec{c}}}^*\odot {{\varvec{c}}}\). In fact, the ith element of \(\bar{{\varvec{c}}}\), denoted by \(\bar{c}_i\), is the product of the mth element of \({{\varvec{c}}}^*\) and the nth element of \({{\varvec{c}}}\), where the mapping between mn, and i is

$$\begin{aligned} m = \left\lceil i/6 \right\rceil , \ n = i - 6 \left\lfloor (i - \textrm{eps})/6 \right\rfloor . \end{aligned}$$
(27)

With the notations mentioned above, the 36 elements of \(\bar{{\varvec{c}}}\) can be computed and are listed in Table 1.

Table 1 Entries in the \(36 \times 1\) Vector \({{\varvec{c}}}^*\otimes {{\varvec{c}}}\)

From Table 1, it is easy to check that

$$\begin{aligned}{} & {} \bar{c}_7 - \bar{c}_2 = e_y^*e_x - e_x^*e_y = 0, \\{} & {} \bar{c}_{10} - \bar{c}_5 = e_y^*m_x - e_x^*m_y = 0, \\{} & {} \bar{c}_{21} - \bar{c}_{16} = m_x^*e_z - e_z^*m_x = 0,\\{} & {} \bar{c}_{24} + \bar{c}_{13} = m_x^*m_z + e_z^*e_x = 0,\\{} & {} \bar{c}_{25} - \bar{c}_{20} = m_y^*e_x - m_x^*e_y = 0,\\{} & {} \bar{c}_{26} + \bar{c}_{19} + \bar{c}_{18} = m_y^*e_y + m_x^*e_x + e_z^*m_z = 0,\\{} & {} \bar{c}_{27} - \bar{c}_{17} = m_y^*e_z - e_z^*m_y = 0,\\{} & {} \bar{c}_{28} - \bar{c}_{23} = m_y^*m_x - m_x^*m_y = 0,\\{} & {} \bar{c}_{29} + \bar{c}_{22} - \bar{c}_{15} = m_y^*m_y + m_x^*m_x - e_z^*e_z = 0,\\{} & {} \bar{c}_{30} + \bar{c}_{14} = m_y^*m_z + e_z^*e_y = 0,\\{} & {} \bar{c}_{31} - \bar{c}_{6} = m_z^*e_x - e_x^*m_z = 0,\\{} & {} \bar{c}_{32} - \bar{c}_{12} = m_z^*e_y - e_y^*m_z = 0,\\{} & {} \bar{c}_{33} + \bar{c}_{4} + \bar{c}_{11} = m_z^*e_z + e_x^*m_x + e_y^*m_y = 0,\\{} & {} \bar{c}_{34} + \bar{c}_{3} = m_z^*m_x + e_x^*e_z = 0,\\{} & {} \bar{c}_{35} + \bar{c}_{9} = m_z^*m_y + e_y^*e_z = 0,\\{} & {} \bar{c}_{36} - \bar{c}_{1} - \bar{c}_{8} = m_z^*m_z - e_x^*e_x - e_y^*e_y = 0, \end{aligned}$$

Therefore, the 7th, 10th, 21st, and 24-36th rows of \({\bar{{\varvec{C}}}}\) are linearly dependent on the remaining 20 rows. For sources of pairwise distinct auxiliary polarization angles and pairwise distinct polarization phase differences, the rank of \({\bar{{\varvec{C}}}}\) is up to 20 at most. That is, \(\textrm{rank} ({\bar{{\varvec{C}}}}) \le \textrm{min}(20, K)\). Since the spatial coarray manifold \(\tilde{{\varvec{Q}}}\) and the diagonal matrix \({{\varvec{R}}}_s\) are always full rank, the rank of the signal part of \({{\varvec{R}}}_\textrm{cops}\) would equal to \(\textrm{rank} (\tilde{{\varvec{Q}}} {{\varvec{R}}}_s \bar{{\varvec{C}}})\) and satisfy

$$\begin{aligned} \textrm{rank} (\tilde{{\varvec{Q}}} {{\varvec{R}}}_s \bar{{\varvec{C}}}) \le \textrm{min}(20, K, \tilde{L}) \le \textrm{min}(20, K). \end{aligned}$$
(28)

For the use of the subspace-based techniques, it is required that

$$\begin{aligned} \textrm{rank}({{\varvec{R}}}_\textrm{cops}) = \textrm{rank} (\tilde{{\varvec{Q}}} {{\varvec{R}}}_s \bar{{\varvec{C}}}) = K. \end{aligned}$$
(29)

The requirement in (29) together with the limitation in (28) imply that \(K \le 20\). In addition, to guarantee that a signal subspace is available, it is required that \(K \le \tilde{L} - 1\). Combining these two constraints yields

$$\begin{aligned} K \le \textrm{min}(\tilde{L} - 1, K). \end{aligned}$$
(30)

Therefore, applying the subspace-based techniques directly to \({{\varvec{R}}}_\textrm{cops}\), the maximum number of identifiable sources is \(K = \min \{\tilde{L} - 1, 20\}\). The proof is thus complete.

Appendix C: Proof of Corollary 1

For \(\gamma _1 = \gamma _2 = \cdots = \gamma _K = \gamma \), we have

$$\begin{aligned}{} & {} \cos ^2 \gamma \bar{c}_{15} - \sin ^2 \gamma (\bar{c}_{1} + \bar{c}_{8}) = 0,\\{} & {} \cos ^2 \gamma \bar{c}_{16} + \sin ^2 \gamma \bar{c}_{6} = 0,\\{} & {} \cos ^2 \gamma \bar{c}_{17} + \sin ^2 \gamma \bar{c}_{12} = 0,\\{} & {} \cos ^2 \gamma \bar{c}_{22} - \sin ^2 \gamma \bar{c}_{1} = 0,\\{} & {} \cos ^2 \gamma \bar{c}_{23} - \sin ^2 \gamma \bar{c}_{2} = 0. \end{aligned}$$

Combining with the results obtained in Appendix 5, we can conclude that for \(\gamma _1 = \gamma _2 = \cdots = \gamma _K\), the 7th, 10th, 15-17th, and 21-36th rows of \(\bar{{\varvec{C}}}\) are linearly dependent on the remaining 15 rows.

For \(\eta _1 = \eta _2 = \cdots = \eta _K = \eta \), we have

$$\begin{aligned}{} & {} e^{j \eta } \bar{c}_{13} - e^{-j\eta } \bar{c}_{3} = 0,\\{} & {} e^{j \eta } \bar{c}_{14} - e^{-j\eta } \bar{c}_{9} = 0,\\{} & {} e^{j \eta } \bar{c}_{18} + e^{-j \eta } (\bar{c}_{4} + \bar{c}_{11}) = 0,\\{} & {} e^{j \eta } \bar{c}_{19} - e^{-j\eta } \bar{c}_{4} = 0,\\{} & {} e^{j \eta } \bar{c}_{20} - e^{-j\eta } \bar{c}_{5} = 0. \end{aligned}$$

Combining with the results obtained in Appendix 5, we can conclude that for \(\eta _1 = \eta _2 = \cdots = \eta _K\), the 7th, 10th, 13rd, 14th, 18-21st, and 24-36th rows of \(\bar{{\varvec{C}}}\) are linearly dependent on the remaining 15 rows. For the preceding two cases, we have \(\textrm{rank} ({\bar{{\varvec{C}}}}) \le \textrm{min}(15, K)\). Following the same routine as we did in Appendix 5, the result in Corollary 1 can be thus established.

Appendix D: Proof of Corollary 2

For \(\gamma _1 = \gamma _2 = \cdots = \gamma _K = \gamma \) and \(\eta _1 = \eta _2 = \cdots = \eta _K = \eta \), we have

$$\begin{aligned}{} & {} e^{-j \eta } \cos \gamma \bar{c}_{4} - \sin \gamma \bar{c}_{1} = 0,\\{} & {} e^{-j \eta } \cos \gamma \bar{c}_{5} - \sin \gamma \bar{c}_{2} = 0,\\{} & {} e^{j \eta } \sin \gamma \bar{c}_{6} + \cos \gamma \bar{c}_{3} = 0,\\{} & {} e^{-j \eta } \cos \gamma \bar{c}_{11} - \sin \gamma \bar{c}_{8} = 0,\\{} & {} e^{j \eta } \sin \gamma \bar{c}_{12} + \cos \gamma \bar{c}_{9} = 0. \end{aligned}$$

Together with the results obtained in Appendices 5 and 5, we can conclude that for \(\gamma _1 = \gamma _2 = \cdots = \gamma _K\) and \(\eta _1 = \eta _2 = \cdots = \eta _K\), only the first three, the 8th, and the 9th rows of \(\bar{{\varvec{C}}}\) are linear independent. Thus, \(\textrm{rank} ({\bar{{\varvec{C}}}}) \le \textrm{min}(5, K)\), and the result in Corollary 2 can be established.

Appendix E: Proof of Corollary 3

It follows directly from (16) and (19) that the rank of \(\bar{{\varvec{R}}}_\textrm{cops}\) satisfies

$$\begin{aligned} \textrm{rank} (\bar{{\varvec{R}}}_\textrm{cops})\le & {} \textrm{rank}\left( \sum _{p = 1}^P {{\varvec{F}}}_p {{\varvec{R}}}_\textrm{cops} {{\varvec{F}}}_p^H\right) \nonumber \\ {}\le & {} \textrm{min}(PJ, PK). \end{aligned}$$
(31)

Constraints (29) and (31) together yield \(K \le PJ\). To apply the subspace-based techniques, it is required that \(K \le L^{\prime } - 1\). Combining these two constraints leads to

$$\begin{aligned} K \le \textrm{min}(L^{\prime } - 1, PJ). \end{aligned}$$
(32)

Therefore, applying the subspace-based techniques directly to \(\bar{{\varvec{R}}}_\textrm{cops}\), the maximum number of identifiable sources is \(K = \min \{L^{\prime } - 1, PJ\}\), completing the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, J., Shu, T. et al. Coarray Polarization Smoothing for DOA Estimation with Coprime Vector Sensor Arrays. Circuits Syst Signal Process 42, 3094–3116 (2023). https://doi.org/10.1007/s00034-022-02275-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02275-1

Keywords

Navigation