Skip to main content
Log in

WITH: Weighted Truncated Hadamard-Matrix-Based Deterministic Compressive Sampling for Sparse Multiband Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the orthogonal observation matrix design of deterministic compressive sampling (CS). An observation matrix called the weighted truncated Hadamard-modulated wideband converter (WITH-MWC) is deterministically designed based on the truncated Hadamard matrix. This matrix can meet the restricted isometry property (RIP) condition with overwhelming probability by randomly or strategically extracting from a standard Hadamard matrix. Most compressed sampling systems are highly sensitive to noise. To reduce the adverse effects of noise interference, partial specific matrix elements are weighted according to the sparse characteristics of multiband signals, and the recovery probability is provably better than that of the original system and other deterministic observation matrices, especially in the low signal-to-noise ratio scenario. Compared to the random Gaussian and random Bernoulli matrices, WITH-MWC is much easier to implement in hardware. The simulations verify the above analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available on Github at https://github.com/1noS/WITH MWC.git

References

  1. I. Ahmed, A. Khan, A. Khan, K. Mujahid, N. Khan, Efficient measurement matrix for speech compressive sampling. Multimed. Tools Appl. 20(13), 20327–20343 (2021). https://doi.org/10.1007/s11042-021-10657-x

    Article  Google Scholar 

  2. Z. Cai, H. Zhao, M. Jia, G. Wang, J. Shen, An improved hadamard measurement matrix based on walsh code for compressive sensing. In: 2013 9th International Conference on Information, Communications Signal Processing, pp. 1–4 (2013). https://doi.org/10.1109/ICICS.2013.6782833

  3. E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006). https://doi.org/10.1109/TIT.2005.862083

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Chen, C.H. Vun, A feature-based compressive spectrum sensing technique for cognitive radio operation. Circuits Syst Signal Process 37(3), 1287–1314 (2018). https://doi.org/10.1007/s00034-017-0610-x

    Article  MathSciNet  Google Scholar 

  5. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Gan, S. Xiao, Z. Zhang, S. Shan, Y. Gao, Chaotic compressive sampling matrix: where sensing architecture meets sinusoidal iterator. Circuits Syst Signal Process 39(3), 1581–1602 (2020). https://doi.org/10.1007/s00034-019-01223-w

    Article  Google Scholar 

  7. W.B. Johnson, J. Lindenstrauss, Extensions of lipschitz mappings into a hilbert space. Contemp. Math. 26(189–206), 1 (1984)

    MathSciNet  MATH  Google Scholar 

  8. K. Li, C. Ling, L. Gan, Deterministic compressed-sensing matrices: Where toeplitz meets golay. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3748–3751 (2011). https://doi.org/10.1109/ICASSP.2011.5947166

  9. G. Lu, K. Li, C. Ling, Golay meets hadamard: Golay-paired hadamard matrices for fast compressed sensing. In: 2012 IEEE Information Theory Workshop, pp. 637–641 (2012). https://doi.org/10.1109/ITW.2012.6404755

  10. M. Mishali, Y.C. Eldar, Wideband spectrum sensing at sub-nyquist rates [applications corner]. IEEE Signal Process. Mag. 28(4), 102–135 (2011). https://doi.org/10.1109/MSP.2011.941094

    Article  Google Scholar 

  11. L. Ou, S. Liao, Z. Qin, H. Yin, Millimeter wave wireless hadamard image transmission for mimo enabled 5g and beyond. IEEE Wirel. Commun. 27(6), 134–139 (2020). https://doi.org/10.1109/MWC.001.2000081

    Article  Google Scholar 

  12. A. Ravelomanantsoa, H. Rabah, A. Rouane, Compressed sensing: a simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 64(12), 3405–3413 (2015). https://doi.org/10.1109/TIM.2015.2459471

    Article  Google Scholar 

  13. H. Sun, A. Nallanathan, C. Wang, Y. Chen, Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel. Commun. 20(2), 74–81 (2013). https://doi.org/10.1109/MWC.2013.6507397

    Article  Google Scholar 

  14. J. Tropp, A. Gilbert, M. Strauss, Algorithms for simultaneous sparse approximation. Part i Greedy pursuit. Signal Process. 86(3), 572–588 (2006). https://doi.org/10.1016/j.sigpro.2005.05.030

    Article  MATH  Google Scholar 

  15. R. Wang, J. Guo, H. Leung, Orthogonal circulant structure and chaotic phase modulation based analog to information conversion. Signal Process. 144, 104–117 (2018). https://doi.org/10.1016/j.sigpro.2017.10.003

    Article  Google Scholar 

  16. X. Xu, G. Li, Y. Gu, Unraveling the veil of subspace rip through near-isometry on subspaces. IEEE Trans. Signal Process. 68, 3117–3131 (2020). https://doi.org/10.1109/TSP.2020.2984905

    Article  MathSciNet  MATH  Google Scholar 

  17. W.-K. Yu, Super sub-nyquist single-pixel imaging by means of cake-cutting hadamard basis sort. Sensors 19(19), 4122 (2019). https://doi.org/10.3390/s19194122

    Article  Google Scholar 

  18. J. Zhang, X. Zhang, Y. Su, L. Qiao, Stairs sequence based analog to information conversion for spectrum sensing of multiband signals. In: 2020 15th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 199–204 (2020). https://doi.org/10.1109/ICSP48669.2020.9321016

  19. J. Zhang, N. Fu, X. Peng, Compressive circulant matrix based analog to information conversion. IEEE Signal Process. Lett. 21(4), 428–431 (2014). https://doi.org/10.1109/LSP.2013.2285444

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under grant 61701138 and by the Hei Long Jiang Postdoctoral Foundation under Grant LBH-Z16087 and by the Natural Science Foundation of Heilongjiang Province of China under Grant LH2022F019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of lemma 1

According to the JL lemma, for all \(n \times n \) matrices decimated from a Gaussian random variables set (J), the probability that the inner product of any two different vectors deviates from 0 decreases exponentially with the increase in n. Therefore, the similarity of a Gaussian distributed matrix to an orthogonal matrix can be expressed by the following probability:

$$\begin{aligned} P( \vert \left\langle u,v\right\rangle \vert \ge \epsilon ) \le 4e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(30)

where \( u,v \in R^{n} \) are independently and randomly sampled from J.

Because \(u,v\sim N(0,\frac{1}{n})\), then \(\dfrac{u\pm v}{\sqrt{2}}\sim N(0,\frac{1}{n})\).

From the JL lemma,

$$\begin{aligned} P(\vert \vert \dfrac{u + v}{\sqrt{2}} \vert \vert -1 \ge \epsilon ) \le e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(31)
$$\begin{aligned} P( 1 - \vert \vert \dfrac{u - v}{\sqrt{2}} \vert \vert \ge \epsilon ) \le e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(32)

Because

$$\begin{aligned} \vert \vert \dfrac{u + v}{\sqrt{2}} \vert \vert - 1 + 1 - \vert \vert \dfrac{u - v}{\sqrt{2}} \vert \vert= & {} \vert \vert \dfrac{u + v}{\sqrt{2}} \vert \vert - \vert \vert \dfrac{u - v}{\sqrt{2}} \vert \vert \nonumber \\= & {} \left\langle u,v\right\rangle \end{aligned}$$
(33)

Therefore,

$$\begin{aligned} P( \left\langle u,v\right\rangle \ge \epsilon )\le & {} P( \vert \vert \dfrac{u + v}{\sqrt{2}} \vert \vert -1 \ge \epsilon ) + P( 1 - \vert \vert \dfrac{u - v}{\sqrt{2}} \vert \vert \ge \epsilon ) \nonumber \\\le & {} 2e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(34)

Similarly,

$$\begin{aligned} P(-\left\langle u,v\right\rangle \ge \epsilon ) \le 2e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(35)

Finally, Theorem 1 can be obtained:

$$\begin{aligned} P(\vert \left\langle u,v\right\rangle \vert \ge \epsilon ) \le 4e^{-\frac{n\epsilon ^{2}}{8}}, 0<\epsilon <1 \end{aligned}$$
(36)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, J. & Qiao, L. WITH: Weighted Truncated Hadamard-Matrix-Based Deterministic Compressive Sampling for Sparse Multiband Signals. Circuits Syst Signal Process 42, 1723–1741 (2023). https://doi.org/10.1007/s00034-022-02191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02191-4

Keywords

Navigation