Skip to main content
Log in

The Maximum Correntropy Criterion-Based Robust Hierarchical Estimation Algorithm for Linear Parameter-Varying Systems with Non-Gaussian Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The traditional identification algorithms are generally based on the quadratic criterion functions and perform well under the interference of Gaussian noise. However, their performances become worse when non-Gaussian impulsive noise is encountered in practical situations. By introducing the maximum correntropy criterion and utilizing its robustness against outliers, this paper develops a robust recursive algorithm for the linear parameter-varying system with the non-Gaussian noise. The algorithm is not only simple and easy to implement, but also can resist the negative influence of the non-Gaussian noise. Moreover, a maximum correntropy criterion-based robust hierarchical algorithm is presented to increase the calculative efficiency. Three simulation examples are provided to demonstrate the validity of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. A.K. Al-Jiboory, G.M. Zhu et al., LPV modeling of a flexible wing aircraft using modal alignment and adaptive gridding methods. Aerosp. Sci. Technol. 66, 92–102 (2017)

    Article  Google Scholar 

  2. C. Campbell, Kernel methods: a survey of current techniques. Neurocomputing 48(1–4), 63–84 (2002)

    Article  MATH  Google Scholar 

  3. L. Chen, Y.S. Ding, Multiple model approach for nonlinear system identification with mixed-Gaussian weighting functions. Int. J. Model. Identif. Control 28(4), 295–306 (2017)

    Article  Google Scholar 

  4. J. Chen, F. Ding, M.F. Hu, Q.M. Zhu, Accelerated gradient descent estimation for rational models by using Volterra series: structure identification and parameter estimation. IEEE Trans. Circuits Syst. II 69(3), 1497–1501 (2022)

    Article  Google Scholar 

  5. J. Chen, B. Huang et al., Identification of two-dimensional causal systems with missing output data via expectation-maximization algorithm. IEEE Trans. Ind. Inform. 17(8), 5185–5196 (2021)

    Article  Google Scholar 

  6. P.B. Cox, R. Tóth, M. Petreczky, Towards efficient maximum likelihood estimation of LPV-SS models. Automatica 97, 392–403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Djennounel, M. Bettayeb, Modulating function-based fast convergent observer and output feedback control for a class of non-linear systems. IET Control Theory Appl. 13(16), 2681–2693 (2019)

    Article  MathSciNet  Google Scholar 

  8. S.J. Fan, F. Ding, T. Hayat, Recursive identification of errors-in-variables systems based on the correlation analysis. Circuits Syst. Signal Process. 39(12), 5951–5981 (2020)

    Article  Google Scholar 

  9. D. Gidon, H.S. Abbas et al., Data-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing. Control Eng. Pract. 109, 104725 (2021)

    Article  Google Scholar 

  10. A. Golabi, N. Meskin, R. Tóth, J.A. Mohammadpour, Bayesian approach for LPV model identification and its application to complex processes. IEEE Trans. Control Syst. Technol. 25(6), 2160–2167 (2017)

    Article  Google Scholar 

  11. M. Hadian, A. Ramezani, W.J. Zhang, Discretisation of linear parameter-varying state-space representations. Control Appl. Learn. 10(13), 1557 (2021)

    Google Scholar 

  12. B. Hadid, E. Duviella, S. Lecoeuche, Data-driven modeling for river flood forecasting based on a piecewise linear ARX system identification. J. Process Control 86, 44–56 (2020)

    Article  Google Scholar 

  13. L. Janjanam, S.K. Saha et al., Global gravitational search algorithm-aided Kalman filter design for Volterra-based nonlinear system identification. Circuits Syst. Signal Process. 40(5), 2302–2334 (2021)

    Article  Google Scholar 

  14. S.D. Julián M, S.L. Julián J et al., Autonomous ground vehicle lane-keeping LPV model-based control: dual-rate state estimation and comparison of different real-time control strategies. Sensors 21(4), 1531–1532 (2021)

    Article  Google Scholar 

  15. V. Laurain, R. Laurain et al., Sparse RKHS estimation via globally convex optimization and its application in LPV-IO identification. Automatica 115, 108914 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Li, F. Ding, Identification methods of nonlinear systems based on the kernel functions. Nonlinear Dyn. 104(3), 2537–2552 (2021)

    Article  Google Scholar 

  17. J.M. Li, F. Ding, Fitting nonlinear signal models using the increasing-data criterion. IEEE Signal Process. Lett. 29, 1302–1306 (2022)

    Article  Google Scholar 

  18. Y.S. Li, Y.Y. Wang, F. Albu, A general zero attraction proportionate normalized maximum correntropy criterion algorithm for sparse system identification. Symmetry 9(10), 229 (2017)

    Article  MATH  Google Scholar 

  19. Y.S. Li, Y.Y. Wang, R. Yang, F. Albu, A soft parameter function penalized normalized maximum correntropy criterion algorithm for sparse system identification. Entropy 19(1), 45 (2017)

    Article  MathSciNet  Google Scholar 

  20. Z. Li, L. Xing, B.D. Chen, Adaptive filtering with quantized minimum error entropy criterion. Signal Process. 172, 107534 (2020)

    Article  Google Scholar 

  21. J. Li, T.C. Zong, J.P. Gu, L. Hua, Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle. Circuits Syst. Signal Process. 39(7), 3470–3495 (2020)

    Article  MATH  Google Scholar 

  22. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. S.Y. Liu, X. Zhang et al., Expectation-maximization algorithm for bilinear systems by using the Rauch–Tung–Striebel smoother. Automatica 142, 110365 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.F. Ma, Y. Zhao, Z.D. Wang, J. Hu, Q.L. Han, Probability-guaranteed envelope-constrained filtering for nonlinear systems subject to measurement outliers. IEEE Trans. Autom. Control 66(7), 3274–3281 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Piga, P. Cox, R. Tóth, V. Laurain, LPV system identification under noise corrupted scheduling and output signal observations. Automatica 53, 329–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Pogula, T.K. Kumar, F. Albu, Robust sparse normalized LMAT algorithms for adaptive system identification under impulsive noise environments. Circuits Syst. Signal Process. 38(11), 5103–5134 (2019)

    Article  Google Scholar 

  27. A.J. Pronker, D.A. Abbink et al., Estimating an LPV model of driver neuromuscular admittance using grip force as scheduling variable. IEEE Trans. Hum. Mach. Syst. 50(5), 454–464 (2020)

    Article  Google Scholar 

  28. Y. Pu, Y.Q. Yang, J. Chen, Some stochastic gradient algorithms for Hammerstein systems with piecewise linearity. Circuits Syst. Signal Process. 40(4), 1635–1651 (2021)

    Article  Google Scholar 

  29. H. Reza, F. Mohammad, Robust tube-based model predictive control of LPV systems subject to adjustable additive disturbance set. Automatica 129, 109672 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Senthil, K. Janarthanan, J. Prakash, Nonlinear state estimation using fuzzy Kalman filter. Ind. Eng. Chem. Res. 45(25), 8678–8688 (2006)

    Article  Google Scholar 

  31. J.S. Shamma, M. Athans, Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica 40(2), 559–564 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. W.L. Shi, Y.S. Li, F. Albu, A norm penalized noise-free maximum correntropy criterion algorithm, in 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), November 18–21, Lanzhou, China (2019), pp. 1717–1720

  33. P. Song, H.Q. Zhao et al., Robust time-varying parameter proportionate affine-projection-like algorithm for sparse system identification. Circuits Syst. Signal Process. 40(3), 3395–3416 (2021)

    Article  Google Scholar 

  34. R. Tóth, H.S. Abbas, H. Werner, Robust model predictive controller using recurrent neural networks for input–output linear parameter-varying systems. IET Control Theory Appl. 20(1), 139–153 (2012)

    Google Scholar 

  35. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  36. X.H. Wang, F. Ding, Modified particle filtering-based robust estimation for a networked control system corrupted by impulsive noise. Int. J. Robust Nonlinear Control 32(2), 830–850 (2022)

    Article  MathSciNet  Google Scholar 

  37. X.H. Wang, F. Ding, The robust multi-innovation estimation algorithm for Hammerstein non-linear systems with non-Gaussian noise. IET Control Theory Appl. 15(7), 989–1002 (2021)

    Article  Google Scholar 

  38. X.H. Wang, F. Zhu et al., Bias correction-based recursive estimation for dual-rate output-error systems with sampling noise. Circuits Syst. Signal Process. 39(9), 4297–4319 (2020)

    Article  MATH  Google Scholar 

  39. X.H. Wang, F. Zhu, A novel filtering based recursive estimation algorithm for Box-Jenkins systems. Int. J. Control Autom. Syst. 19(12), 3903–3913 (2021)

    Article  Google Scholar 

  40. Y.Y. Wang, Y.S. Li, F. Albu, R. Yang, Group-constrained maximum correntropy criterion algorithms for estimating sparse mix-noised channels. Entropy 19(8), 432 (2017)

    Article  Google Scholar 

  41. S. Wollnack, H.S. Abbas, R. Tóth, H. Werner, Fixed-structure LPV-IO controllers: an implicit representation based approach. Automatica 83, 282–289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Xu, Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 41(2), 805–830 (2022)

    Article  Google Scholar 

  43. H. Xu, F. Ding, B. Champagne, Joint parameter and time-delay estimation for a class of nonlinear time-series models. IEEE Signal Process. Lett. 29, 947–951 (2022)

    Article  Google Scholar 

  44. L. Xu, F. Ding, Q.M. Zhu, Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements. IEEE Trans. Instrum. Meas. 71, 6501313 (2022)

    Google Scholar 

  45. X.Q. Yang, B. Huang, Y.J. Zhao, Y.J. Lu et al., Generalized expectation-maximization approach to LPV process identification with randomly missing output data. Chemometr. Intell. Lab. Syst. 148, 1–8 (2015)

    Article  Google Scholar 

  46. X.Q. Yang, Y.J. Lu, Z.B. Yan, Robust global identification of linear parameter-varying systems with generalised expectation-maximisation algorithm. IET Control Theory Appl. 9(7), 1103–1110 (2015)

    Article  MathSciNet  Google Scholar 

  47. S. Yin, H. Luo, S.X. Ding, Real-time implementation of fault tolerant control systems with performance optimization. IEEE Trans. Ind. Electron. 61(5), 2402–2411 (2014)

    Article  Google Scholar 

  48. X. Zhang, F. Ding et al., State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018)

    Article  MathSciNet  Google Scholar 

  49. X. Zhang, F. Ding, Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 29, 399–403 (2022)

    Article  Google Scholar 

  50. Y.H. Zhou, F. Ding, Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II 68(12), 3597–3601 (2021)

    Article  Google Scholar 

  51. Y.H. Zhou, X. Zhang et al., Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 414, 126663 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Project of Henan Higher Education Institutions (No. 21A413006), Nanhu Scholars Program for Young Scholars of XYNU (No. 2017B67) and Graduate Research and Innovation Fund of Xinyang Normal University (No. 2021KYJJ44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, X. The Maximum Correntropy Criterion-Based Robust Hierarchical Estimation Algorithm for Linear Parameter-Varying Systems with Non-Gaussian Noise. Circuits Syst Signal Process 41, 7117–7144 (2022). https://doi.org/10.1007/s00034-022-02116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02116-1

Keywords

Navigation