Skip to main content
Log in

Robust Sparse Normalized LMAT Algorithms for Adaptive System Identification Under Impulsive Noise Environments

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is known that the conventional adaptive filtering algorithms can have good performance for non-sparse systems identification, but unsatisfactory performance for sparse systems identification. The normalized least mean absolute third (NLMAT) algorithm which is based on the high-order error power criterion has a strong anti-jamming capability against the impulsive noise, but reduced estimation performance in case of sparse systems. In this paper, several sparse NLMAT algorithms are proposed by inducing sparse-penalty functions into the standard NLMAT algorithm in order to exploit the system sparsity. Simulation results are given to validate that the proposed sparse algorithms can achieve a substantial performance improvement for a sparse system and robustness to impulsive noise environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. F. Adachi, E. Kudoh, New direction of broadband wireless technology. Wirel. Commun. Mob. Comput. 7(8), 969–983 (2007). https://doi.org/10.1002/wcm.507

    Article  Google Scholar 

  2. M.S. Aslam, N.I. Chaudhary, M.A.Z. Raja, A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn. 87(1), 519–533 (2017). https://doi.org/10.1007/s11071-016-3058-9

    Article  MATH  Google Scholar 

  3. R. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007). https://doi.org/10.1109/msp.2007.4286571

    Article  Google Scholar 

  4. J. Benesty, T. Gänsler, D.R. Morgan, M.M. Sondhi, S.L. Gay, Advances in Network and Acoustic Echo Cancellation (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04437-7

    Book  MATH  Google Scholar 

  5. J. Benesty, S.L. Gay, An improved PNLMS algorithm, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, May 2002, pp. 1881–1884. https://doi.org/10.1109/icassp.2002.5744994

  6. E. Cand‘es, Compressive sampling. Int. Congr. Math. 3, 1433–1452 (2006). https://doi.org/10.4171/022-3/69

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Chambers, A. Avlonitis, A robust mixed-norm adaptive filter algorithm. IEEE Signal Proc. Lett. 4(2), 46–48 (1997). https://doi.org/10.1109/97.554469

    Article  Google Scholar 

  8. N.I. Chaudhary, M. Ahmed et al., Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive systems. Appl. Math. Model. 55, 698–715 (2018). https://doi.org/10.1016/j.apm.2017.11.023

    Article  MathSciNet  Google Scholar 

  9. N.I. Chaudhary, S. Zubair, M.A.Z. Raja, A new computing approach for power signal modeling using fractional adaptive algorithms. ISA Trans. 68, 189–202 (2017). https://doi.org/10.1016/j.isatra.2017.03.011

    Article  Google Scholar 

  10. Y. Chen, Y. Gu, A.O. HERO III, Sparse LMS for system identification, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, April 2009, pp. 3125–3128. https://doi.org/10.1109/icassp.2009.4960286

  11. Z. Chen, S. Haykin, S.L. Gay, Proportionate Adaptation: New Paradigms in Adaptive Filters, Ch. 8 (Wiley, New York, 2005)

    Google Scholar 

  12. S. Cho, D.K. Sang, Adaptive filters based on the high order error statistics, in IEEE Asia Pacific Conference on Circuits and Systems, Seoul, South Korea, November 1996, pp. 109–112. https://doi.org/10.1109/apcas.1996.569231

  13. S.H. Cho, S.D. Kim, H.P. Moon, J.Y. Na, Least mean absolute third (LMAT) adaptive algorithm: Mean and mean-squared convergence properties, in Proceedings of Sixth Western Pacific Regional Acoustics Conference, Hong Kong, China, November 1997, pp. 305-310

  14. H. Deng, M. Doroslovacki, Improving convergence of the PNLMS algorithm for sparse impulse response identification. IEEE Signal Process. Lett. 12(3), 181–184 (2005). https://doi.org/10.1109/lsp.2004.842262

    Article  Google Scholar 

  15. P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementations, 3rd edn. (Springer: Boston, MA, USA, 2008). ISBN: 978-0-387-31274-3

  16. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/tit.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  17. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000). https://doi.org/10.1109/89.861368

    Article  Google Scholar 

  18. G. Gui, L. Dai, B. Zheng, L. Xu, F. Adachi, Correntropy induced metric penalized sparse RLS algorithm to improve adaptive system identification, in IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, May 2016. https://doi.org/10.1109/vtcspring.2016.7504179

  19. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall: Upper Saddle River, NJ, USA, 2002). ISBN: 978-0-130-90126-2

  20. J. J. Jeong, S. W. Kim, Exponential normalized sign algorithm for system identification, in International Conference on Information Communications and Signal Processing International Conference (ICICS), Singapore, December 2011, pp. 1–4. https://doi.org/10.1109/icics.2011.6174219

  21. Z. Jin, Y. Li, Y. Wang, An enhanced set-membership PNLMS algorithm with a correntropy induced metric constraint for acoustic channel estimation. Entropy 19(6), 1–14 (2017). https://doi.org/10.3390/e19060281

    Article  Google Scholar 

  22. A.W.H. Khong, P.A. Naylor, Efficient use of sparse adaptive filters, in Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (ACSSC ‘06), Pacific Grove, CA, USA, 29 Oct.-1 Nov. 2006, pp. 1375–1379. https://doi.org/10.1109/acssc.2006.354982

  23. Y.H. Lee, J.D. Mok, S.D. Kim, S.H. Cho, Performance of least mean absolute third (LMAT) adaptive algorithm in various noise environments. Electron. Lett. 34(3), 241–243 (1998). https://doi.org/10.1049/el:19980181

    Article  Google Scholar 

  24. Y. Li, Z. Jin, Y. Wang, R. Yang, A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation. Entropy 18(10), 1–14 (2016). https://doi.org/10.3390/e18100380

    Article  Google Scholar 

  25. J. Lin, M. Nassar, B.L. Evans, Impulsive noise mitigation in powerline communications using sparse Bayesian learning. IEEE J. Sel. Areas in Commun. 31(7), 1172–1183 (2013). https://doi.org/10.1109/jsac.2013.130702

    Article  Google Scholar 

  26. D.P. Mandic, E.V. Papoulis, C.G. Boukis, A normalized mixed-norm adaptive filtering algorithm robust under impulsive noise interference, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong, China, April 2003, pp. 333–336. https://doi.org/10.1109/icassp.2003.1201686

  27. E.V. Papoulis, T. Stathaki, A normalized robust mixed-norm adaptive algorithm for system identification. IEEE Signal Proc. Lett. 11(1), 56–59 (2004). https://doi.org/10.1109/lsp.2003.819353

    Article  Google Scholar 

  28. S. Pei, C. Tseng, Least mean p-power error criterion for adaptive FIR filters. IEEE J. Sel. Areas Commun. 12(9), 1540–1547 (1994). https://doi.org/10.1109/49.339922

    Article  Google Scholar 

  29. M.A.Z. Raja, N.I. Chaudhary, Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Sig. Process. 107, 327–339 (2015). https://doi.org/10.1016/j.sigpro.2014.06.015

    Article  Google Scholar 

  30. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley- NJ, USA, 2003). ISBN: 0-471-46126-1

  31. W.F. Schreiber, Advanced television systems for terrestrial broadcasting: Some problems and some proposed solutions. Proc. IEEE 83(6), 958–981 (1995). https://doi.org/10.1109/5.387095

    Article  Google Scholar 

  32. S. Seth, J.C. Principe, Compressed signal reconstruction using the correntropy induced metric, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, USA, 31 March–4 April 2008, pp. 3845–3848. https://doi.org/10.1109/icassp.2008.4518492

  33. M. Shao, C.L. Nikias, Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993). https://doi.org/10.1109/5.231338

    Article  Google Scholar 

  34. D.T.M. Slock, On the convergence behavior of the LMS and NLMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993). https://doi.org/10.1109/78.236504

    Article  MathSciNet  MATH  Google Scholar 

  35. M.M. Sondhi, The history of echo cancellation. IEEE Signal Process. Mag. 23(5), 95–102 (2006). https://doi.org/10.1109/msp.2006.1708416

    Article  Google Scholar 

  36. O. Taheri, S.A. Vorobyov, Sparse channel estimation with Lp-norm and reweighted L1-norm penalized least mean squares, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 2011, pp. 2864–2867. https://doi.org/10.1109/icassp.2011.5947082

  37. O. Taheri, S.A. Vorobyov, Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis. Signal Process. 104(2014), 70–79 (2014). https://doi.org/10.1016/j.sigpro.2014.03.048

    Article  Google Scholar 

  38. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  39. E. Walach, B. Widrow, The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inf. Theory 30(2), 275–283 (1984). https://doi.org/10.1109/tit.1984.1056886

    Article  Google Scholar 

  40. Y. Wang, Y. Li, F. Albu, R. Yang, Sparse channel estimation using correntropy induced metric criterion based SM-NLMS algorithm, in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, March 2017, pp. 1–6. https://doi.org/10.1109/wcnc.2017.7925628

  41. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice Hall: NJ, USA, 1985). ISBN: 0-13-004029-0

  42. F.Y. Wu, F. Tong, Non-uniform norm constraint LMS algorithm for sparse system identification. IEEE Commun. Lett. 17(2), 385–388 (2013). https://doi.org/10.1109/lcomm.2013.011113.121586

    Article  MathSciNet  Google Scholar 

  43. H. Zhao, Y. Yu, S. Gao, Z. He, A new normalized LMAT algorithm and its performance analysis. Signal Process. 105(12), 399–409 (2014). https://doi.org/10.1016/j.sigpro.2014.05.018

    Article  Google Scholar 

Download references

Acknowledgements

The work of Felix Albu was supported by a grant from the Romanian National Authority for Scientific research and Innovation, CNCS/CCCDI-UEFISCDI project number PN-III-P4-ID-PCE-2016-0339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Pogula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogula, R., Kumar, T.K. & Albu, F. Robust Sparse Normalized LMAT Algorithms for Adaptive System Identification Under Impulsive Noise Environments. Circuits Syst Signal Process 38, 5103–5134 (2019). https://doi.org/10.1007/s00034-019-01111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01111-3

Keywords

Navigation