Skip to main content
Log in

Passivity-Based Sliding Mode Control for Lur’e Singularly Perturbed Time-Delay Systems with Input Nonlinearity

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the passivity-based sliding mode control (SMC) for Lur’e singularly perturbed time-delay systems with input nonlinearity. First, a novel \(\varepsilon\)-dependent sliding mode surface is designed such that resulting sliding mode dynamics is still a singularly perturbed system. Based on this, a SMC law is designed to guarantee that the system state can be driven onto the specified sliding mode surface in a finite time and stays there for all future time. Then, delay-dependent and delay-independent sufficient conditions are proposed such that the sliding mode dynamics is passive and asymptotically stable. The criteria presented are both independent of the small parameter and the upper bound for the passivity can be obtained in a workable computation way. Finally, the validity of the developed methods is illustrated by three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this article.

References

  1. S. Boyd, L.E.I. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  2. C.I. Byrnes, A. Isidori, J.C. Willems, Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.Y. Che, H.T. Yu, C.Y. Yang, L.N. Zhou, Passivity analysis and disturbance observer-based adaptive integral sidling mode control for uncertain singularly perturbed systems with input non-linearity. IET Control Theory Appl. 13(18), 3174–3183 (2019)

    Article  MathSciNet  Google Scholar 

  4. Z.G. Feng, J. Lam, H.J. Gao, α-Dissipativity analysis of singular time-delay systems. Automatica 47(11), 2548–2552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Gao, B. Sun, G. Lu, Passivity-based integral sliding-mode control of uncertain singularly perturbed systems. IEEE Trans. Circuits Syst. 58(6), 386–390 (2011)

    Google Scholar 

  6. W.M. Haddad, D.S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability. Part I: continuous-time theory. Int. J. Robust Nonlinear Control 3(4), 313–339 (1993)

    Article  MATH  Google Scholar 

  7. W.M. Haddad, D.S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability. Part II: discrete-time theory. Int. J. Robust Nonlinear Control 4(2), 249–265 (1994)

    Article  MATH  Google Scholar 

  8. D. Hill, Dissipativeness, Stability Theory and Some Remaining Problems: In Analysis and Control of Nonlinear Systems (North-Holland, Amsterdam, 1988)

    MATH  Google Scholar 

  9. K.C. Hsu, Variable structure control design for uncertain dynamic systems with sector nonlinearities. Automatica 34(4), 505–508 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Hu, Z.D. Wang, Y.G. Niu, L.K. Stergioulas, H∞ sliding mode observer design for a class of nonlinear discrete time-delay systems: a delay-fractioning approach. Int. J. Robust Nonlinear Control 22(16), 1806–1826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z.P. Jiang, D.J. Hill, Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems. IEEE Trans. Autom. Control 43(7), 992–997 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2000)

    Google Scholar 

  13. P.V. Kokotovic, H.K. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)

    MATH  Google Scholar 

  14. O.M. Kwon, J.W. Son, S.M. Lee, Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72(1–2), 129–140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.M. Lee, J.H. Park, O.M. Kwon, Improved asymptotic stability analysis for Lur’e systems with sector and slope restricted nonlinearities. Phys. Lett. A 362(5–6), 348–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Levant, A. Michael, Adjustment of high-order sliding-mode controllers. Int. J. Robust Nonlinear Control 19(15), 1657–1672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Li, S.Y. Xu, B.Y. Zhang, Resilient asynchronous H∞ control for discrete-time Markov jump singularly perturbed systems based on hidden Markov model. IEEE Trans. Syst. Man Cybern. Syst. 50(8), 2860–2869 (2020)

    Google Scholar 

  18. Q. Liu, Z.F. Qi, J.X. Li, S.P. Ma, C.Y. Yang, Passivity-based robust adaptive sliding mode control for singular time-delay systems with uncertainties in both derivative matrix and some other system matrices. Int. J. Robust Nonlinear Control 31(2), 447–470 (2021)

    Article  MathSciNet  Google Scholar 

  19. W. Liu, Y.Y. Wang, Robust observer-based absolute stabilization for Lur’e singularly perturbed systems with state delay. ISA Trans. 65, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  20. W. Liu, Y.Y. Wang, H∞ control of Markovian jump linear singularly perturbed systems. Circuits Syst. Signal Process. 40(9), 4230–4245 (2021)

    Article  Google Scholar 

  21. W. Liu, Y.Y. Wang, Z.M. Wang, H∞ observer-based sliding mode control for singularly perturbed systems with input nonlinearity. Nonlinear Dyn. 85(1), 573–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.P. Matthews, R.A. Decarlo, Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica 24(2), 187–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. K.Q. Mei, S.H. Ding, HOSM controller design with asymmetric output constraints. Sci. China 65(8), 189202:1-189202:2 (2022)

    MathSciNet  Google Scholar 

  24. K.Q. Mei, L. Ma, S.H. Ding, Design of high-order sliding mode controller under asymmetric output constraints. Int. J. Robust Nonlinear Control 31(15), 7107–7124 (2021)

    Article  MathSciNet  Google Scholar 

  25. D.S. Naidu, Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impulsive Syst. Ser. B Appl. Algorithms 9 (2), 233–278 (2002)

    MathSciNet  MATH  Google Scholar 

  26. V.R. Saksena, P.V. Kokotovic, Singular perturbation of the Popov–Kalman–Yakubovich lemma. Syst. Control Lett. 1(1), 65–68 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Song, Y.G. Niu, H.K. Lam, Reliable sliding mode control of fast sampling singularly perturbed systems: a redundant channel transmission protocol approach. IEEE Trans. Circuits Syst. 66(11), 4490–4501 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Song, B.Y. Zhang, X.N. Song, Y.J. Zhang, Z.Q. Zhang, W.J. Li, Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems. J. Frankl. Inst. 356(10), 5027–5048 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. H.D. Tuan, S. Hosoe, Multivariable circle criteria for multiparameter singularly perturbed systems. IEEE Trans. Autom. Control 45(4), 720–725 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. V.I. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  32. Y.Y. Wang, X.P. Xie, M. Chadli, S.R. Xie, Y. Peng, Sliding mode control of fuzzy singularly perturbed descriptor systems. IEEE Trans. Fuzzy Syst. 29(8), 2349–2360 (2021)

    Article  Google Scholar 

  33. Q.J. Wang, L.N. Zhou, X.P. Ma, C.Y. Yang, Disturbance rejection of singularly perturbed switched systems subject to actuator saturation. Int. J. Robust Nonlinear Control 28(6), 2231–2248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.C. Willems, Dissipative dynamical systems—part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MATH  Google Scholar 

  35. J.C. Willems, Dissipative dynamical systems—part II: linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 45(5), 352–393 (1972)

    Article  MATH  Google Scholar 

  36. L. Wu, W.X. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Xu, C.C. Lim, P. Shi, Sliding mode control of singularly perturbed systems and its application in quad-rotors. Int. J. Control 92(6), 1325–1334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. C.Y. Yang, Z.Y. Che, J. Fu, L.N. Zhou, Passivity-based integral sliding mode control and ε-bound estimation for uncertain singularly perturbed systems with disturbances. IEEE Trans. Circuits Syst. II Express Briefs 66(3), 452–456 (2019)

    Article  Google Scholar 

  39. C.Y. Yang, Z.Y. Che, L.N. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances. Circuits Syst. Signal Process. 38(4), 1561–1582 (2019)

    Article  MathSciNet  Google Scholar 

  40. C.Y. Yang, Q.L. Zhang, J. Sun, T.Y. Chai, Lur’e Lyapunov function and absolute stability criterion for Lur’e singularly perturbed systems. IEEE Trans. Autom. Control 56(11), 2666–2671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Yang, Q. Zhang, L. Zhou, Strongly absolute stability of Lur’e descriptor systems: Popov-type criteria. Int. J. Robust Nonlinear Control 19(7), 786–806 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (61703447), the Research Foundation of the Henan Higher Education Institutions of China (21A110027), and the Foundation for Key Teachers of the Henan Higher Education Institutions of China (2019GGJS217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

Proof

By substituting (19) into (18), we obtain that the inequality (18) is equivalent to.

$$ \left( {\begin{array}{*{20}c} {\overline{\Omega }_{11} } & {\Omega_{12} } & {\Omega_{13} } & {\overline{B}_{\omega } - (CX)^{\text{T}} } & {d(\overline{A}X)^{\text{T}} } & {dX^{\text{T}} WX} \\ * & { - X^{\text{T}} QX} & {(LC_{d} X)^{\text{T}} } & { - \,(C_{d} X)^{\text{T}} } & {d(A_{d} X)^{\text{T}} } & O \\ * & * & { - \,2\eta^{ - 1} I} & {LD_{\omega } } & {\eta^{ - 1} d\overline{B}^{\text{T}} } & O \\ * & * & * & { - \,(D_{\omega } + D_{\omega }^{\text{T}} )} & {d\overline{B}_{\omega }^{\text{T}} } & O \\ * & * & * & * & { - \,d\Pi^{ - 1} } & O \\ * & * & * & * & * & { - \,d(X^{\text{T}} + X - \Pi^{ - 1} )} \\ \end{array} } \right) < 0, $$
(27)

where \(\overline{\Omega }_{11} = X^{\text{T}} \overline{A}^{\text{T}} + \overline{A}X + X^{\text{T}} (W + W^{\text{T}} + Q)X\).

Pre- and post-multiplying the inequality (26) by \({\text{diag}}(I,I,\eta I,\,\,I,I,I)\) and its transpose, respectively. Then the inequality (26) is equivalent to

$$ \left( {\begin{array}{*{20}c} {\overline{\Omega }_{11} } & {\Omega_{12} } & {\overline{B} + \eta (LCX)^{\text{T}} } & {\overline{B}_{\omega } - (CX)^{\text{T}} } & {d(\overline{A}X)^{\text{T}} } & {dX^{\text{T}} WX} \\ * & { - X^{\text{T}} QX} & {\eta (LC_{d} X)^{\text{T}} } & { - \,(C_{d} X)^{\text{T}} } & {d(A_{d} X)^{\text{T}} } & O \\ * & * & { - \,2\eta I} & {\eta LD_{\omega } } & {d\overline{B}^{\text{T}} } & O \\ * & * & * & { - \,(D_{\omega } + D_{\omega }^{\text{T}} )} & {d\overline{B}_{\omega }^{\text{T}} } & O \\ * & * & * & * & { - \,d\Pi^{ - 1} } & O \\ * & * & * & * & * & { - \,d(X^{\text{T}} + X - \Pi^{ - 1} )} \\ \end{array} } \right) < 0. $$
(28)

Notice that \(0 \le (X - \Pi^{ - 1} )^{\text{T}} \Pi (X - \Pi^{ - 1} ) = X^{\text{T}} \Pi X - X - X^{\text{T}} + \Pi^{ - 1}\), which implies that

$$ - X^{\text{T}} \Pi X \le - X - X^{\text{T}} + \Pi^{ - 1} . $$
(29)

Pre- and post-multiplying inequality (27) by \({\text{diag}}(X^{ - T} ,X^{ - T} ,I,\,\,I,\Pi ,X^{ - T} )\) and \({\text{diag}}(X^{ - 1} ,\,X^{ - 1} ,I,\,I,\Pi ,X^{ - 1} )\), respectively, let \(X = P^{ - 1}\), \(Y = KP^{ - 1}\), then it follows from (27) and (28) that the following inequality holds.

$$ \tilde{\Phi } = \left( {\begin{array}{*{20}c} {\tilde{\Omega }_{11} } & {P^{\text{T}} A_{d} - W} & {P^{\text{T}} \overline{B} + \eta (LC)^{\text{T}} } & {P^{\text{T}} \overline{B}_{\omega } - C^{\text{T}} } & {d\overline{A}^{\text{T}} \Pi } & {dW} \\ * & { - \,Q} & {\eta (LC_{d} )^{\text{T}} } & { - \,C_{d}^{\text{T}} } & {dA_{d}^{\text{T}} \Pi } & O \\ * & * & { - \,2\eta I} & {\eta LD_{\omega } } & {d\overline{B}^{\text{T}} \Pi } & O \\ * & * & * & { - \,(D_{\omega } + D_{\omega }^{\text{T}} )} & {d\overline{B}_{\omega }^{\text{T}} \Pi } & O \\ * & * & * & * & { - \,d\Pi } & O \\ * & * & * & * & * & { - \,d\Pi } \\ \end{array} } \right) < 0, $$
(30)

where \(\tilde{\Omega }_{11} = \overline{A}^{\text{T}} P + P^{\text{T}} \overline{A} + W + W^{\text{T}} + Q\).

Since \(X\) is a lower triangular matrix and satisfies \(0 < X_{11} \in R^{n \times n}\) and \(0 < X_{22} \in R^{m \times m}\), so does \(P\). Let us assume that \(P\) has the following form

$$ P = \left( {\begin{array}{*{20}c} {P_{11} } & O \\ {P_{21} } & {P_{22} } \\ \end{array} } \right), $$
(31)

then \(P_{11}\) and \(P_{22}\) are both symmetric and positive definite. Thus, there exists a scalar \(\varepsilon_{11} > 0\) such that \(P_{11} - \varepsilon P_{21}^{\text{T}} P_{22}^{ - 1} P_{21} > 0\) for all \(\varepsilon \in (0,\varepsilon_{11} ]\). According to Schur’s Complement Lemma, it yields

$$ E_{\varepsilon } P_{\varepsilon } = \left( {\begin{array}{*{20}c} {P_{11} } & {\varepsilon P_{21}^{\text{T}} } \\ {\varepsilon P_{21} } & {\varepsilon P_{22} } \\ \end{array} } \right) > 0, $$

where \(P_{\varepsilon } = \left( {\begin{array}{*{20}c} {P_{11} } & {\varepsilon P_{21}^{\text{T}} } \\ {P_{21} } & {P_{22} } \\ \end{array} } \right)\). We choose the storage function candidate as follows:

$$ V(x_{t} ) = \frac{1}{2}\left( {x^{\text{T}} (t)E_{\varepsilon } P_{\varepsilon } \,x(t) + \int_{t - d}^{t} {x^{\text{T}} (\tau )Qx(\tau ){\text{d}}\tau + } \int_{ - d}^{0} {\int_{t + \theta }^{t} {\dot{x}^{\text{T}} (\tau )E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(\tau ){\text{d}}\tau {\text{d}}\theta } } } \right), $$

where \(x_{t} = x(t + \theta )\), \(\theta \in [ - d,0]\). Then, computing the derivative of \(V(x_{t} )\) along trajectories of the sliding mode dynamics yields

$$ \begin{aligned} & \dot{V}(x_{t} ) - \omega^{\text{T}} y \\ & \quad = \frac{1}{2}[2x^{\text{T}} (t)P_{\varepsilon }^{\text{T}} E_{\varepsilon } \,\dot{x}(t) + x^{\text{T}} (t)Qx(t) - x^{\text{T}} (t - d)Qx(t - d) \\ & \quad \quad + d\dot{x}^{\text{T}} (t)E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(t) - \int_{t - d}^{t} {\dot{x}^{\text{T}} (s)E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(s)ds} - 2\omega^{\text{T}} y] \\ & \quad = \frac{1}{2}[2x^{\text{T}} (t)P_{\varepsilon }^{\text{T}} (\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t))\\ &\quad + x^{\text{T}} (t)Qx(t) - x^{\text{T}} (t - d)Qx(t - d) \\ & \quad \quad + d(\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t))^{\text{T}} \Pi (\overline{A}x(t) \\ &\quad + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t)) \\ & \quad \quad - {\kern 1pt} {\kern 1pt} \int_{t - d}^{t} {\dot{x}^{\text{T}} (s)E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(s)ds} - 2\omega^{\text{T}} (Cx(t) + C_{d} x(t - d) + D_{\omega } \omega (t))]. \\ \end{aligned} $$
(32)

Notice that \(x(t) - x(t - d) = \int_{t - d}^{t} {\dot{x}(s)ds}\). Then for \(W \triangleq \left( {W_{1} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} O} \right)\), one has

$$ x^{\text{T}} (t)W\left( {x(t) - x(t - d) - \int_{t - d}^{t} {\dot{x}(s){\text{d}}s} } \right) = 0,\quad WE_{\varepsilon } = \left( {\begin{array}{*{20}c} {W_{1} } & O \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {I_{n} } & O \\ O & {\varepsilon I_{m} } \\ \end{array} } \right) = W. $$
(33)

By (31)–(32) and noticing the sector condition (5), for any scalar \(\eta > 0\), we have

$$ \begin{aligned} & \dot{V}(x_{t} ) - \omega^{\text{T}} y \\ & \quad \le \frac{1}{2}\left[2x^{\text{T}} (t)P_{\varepsilon }^{\text{T}} (\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t)) + x^{\text{T}} (t)Qx(t) - x^{\text{T}} (t - d)Qx(t - d) \right.\\ & \quad \quad + {\kern 1pt} {\kern 1pt} d(\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t))^{\text{T}} \Pi (\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t)) \\ & \quad \quad + {\kern 1pt} {\kern 1pt} 2x^{\text{T}} (t)W(x(t) - x(t - d)) - 2\omega^{\text{T}} (Cx(t) + C_{d} x(t - d) + D_{\omega } \omega (t)) \\ & \left.\quad \quad - 2\eta \varphi^{\text{T}} (t,y)(\varphi (t,y) - Ly)\right] - \frac{1}{2}\left[2x^{\text{T}} (t)W\int_{t - d}^{t} {\dot{x}^{\text{T}} (s){\text{d}}s} + \int_{t - d}^{t} {\dot{x}^{\text{T}} (s)E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(s){\text{d}}s} \right] \\ & \quad = \frac{1}{2}\left[2x^{\text{T}} (t)P_{\varepsilon }^{\text{T}} (\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t)) + x^{\text{T}} (t)Qx(t) - x^{\text{T}} (t - d)Qx(t - d) \right.\\ & \quad \quad + {\kern 1pt} {\kern 1pt} d(\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t))^{\text{T}} \Pi (\overline{A}x(t) + A_{d} x(t - d) + \overline{B}\varphi (t,y) + \overline{B}_{\omega } \omega (t)) \\ & \quad \quad + {\kern 1pt} {\kern 1pt} 2x^{\text{T}} (t)W(x(t) - x(t - d)) - 2\omega^{\text{T}} (Cx(t) + C_{d} x(t - d) + D_{\omega } \omega (t)) + dx^{\text{T}} (t)W\Pi^{ - 1} Wx(t) \\ & \left.\quad \quad - 2\eta \varphi^{\text{T}} (t,y)(\varphi (t,y) - Ly)\right] \\ & \quad \quad - \frac{1}{2}\left[\int_{t - d}^{t} {x^{\text{T}} (t)W\Pi^{ - 1} Wx(t){\text{d}}s} - 2x^{\text{T}} (t)W\int_{t - d}^{t} {\dot{x}^{\text{T}} (s){\text{d}}s} + \int_{t - d}^{t} {\dot{x}^{\text{T}} (s)E_{\varepsilon } \Pi E_{\varepsilon } \dot{x}(s){\text{d}}s} \right] \\ & \quad = \left( {\begin{array}{*{20}c} {x^{\text{T}} (t)} & {x^{\text{T}} (t - d)} & {\varphi^{\text{T}} } & {\omega^{\text{T}} } \\ \end{array} } \right)\frac{1}{2}\Theta_{\varepsilon } \left( {\begin{array}{*{20}c} {x^{\text{T}} (t)} & {x^{\text{T}} (t - d)} & {\varphi^{\text{T}} } & {\omega^{\text{T}} } \\ \end{array} } \right)^{{\text{T}}} \\ & \quad \quad - \frac{1}{2}\int_{t - d}^{t} {(W^{\text{T}} x(t) + \Pi E_{\varepsilon } \dot{x}(s))^{\text{T}} R^{ - 1} (W^{\text{T}} x(t) + \Pi E_{\varepsilon } \dot{x}(s)){\text{d}}s} ]. \\ \end{aligned} $$
(34)

where

$$ \Theta_{\varepsilon } = \left( {\begin{array}{*{20}c} {\Theta_{11} } & {P_{\varepsilon }^{\text{T}} A_{d} - W} & {P_{\varepsilon }^{\text{T}} \overline{B} + \eta (LC)^{\text{T}} } & {P_{\varepsilon }^{\text{T}} \overline{B}_{\omega } - C^{\text{T}} } \\ * & { - \,Q} & {\eta (LC_{d} )^{\text{T}} } & { - \,C_{d}^{\text{T}} } \\ * & * & { - \,2\eta I} & {\eta LD_{\omega } } \\ * & * & * & { - \,(D_{\omega } + D_{\omega }^{\text{T}} )} \\ \end{array} } \right) + d\left( {\begin{array}{*{20}c} {\overline{A}^{\text{T}} } \\ {A_{d}^{\text{T}} } \\ {\overline{B}^{\text{T}} } \\ {\overline{B}_{\omega }^{\text{T}} } \\ \end{array} } \right)\Pi \left( {\begin{array}{*{20}c} {\overline{A}^{\text{T}} } \\ {A_{d}^{\text{T}} } \\ {\overline{B}^{\text{T}} } \\ {\overline{B}_{\omega }^{\text{T}} } \\ \end{array} } \right)^{\text{T}} $$

with \(\Theta_{11} = \overline{A}^{\text{T}} P_{\varepsilon } + P_{\varepsilon }^{\text{T}} \overline{A} + W + W^{\text{T}} + Q + dW\Pi^{ - 1} W\). By Schur’s complement lemma, \(\Theta_{\varepsilon } < 0\) is equivalent to

$$ \tilde{\Phi } + \varepsilon \tilde{\Phi }_{0} < 0, $$

where

$$ \tilde{\Phi }_{0} = \left( {\begin{array}{*{20}c} {\overline{A}^{\text{T}} P_{0} + P_{0}^{\text{T}} \overline{A}} & {P_{0}^{\text{T}} \overline{A}_{d} } & {P_{0}^{\text{T}} \overline{B}} & {P_{0}^{\text{T}} \overline{B}_{\omega } } & O & O \\ * & O & O & O & O & O \\ * & * & O & O & O & O \\ * & * & * & O & O & O \\ * & * & * & * & O & O \\ * & * & * & * & * & O \\ \end{array} } \right),\quad P_{0} = \left( {\begin{array}{*{20}c} O & {P_{21}^{\text{T}} } \\ O & O \\ \end{array} } \right). $$

It follows from \(\tilde{\Phi } < 0\) that there exists a sufficiently small scalar \(\varepsilon_{12} > 0\) such that \(\tilde{\Phi } + \varepsilon \tilde{\Phi }_{0} < 0\) can be guaranteed for \(\varepsilon \in (0,\varepsilon_{12} ]\). Let \(\varepsilon^{ * } = \min \{ \varepsilon_{11} ,\,\,\varepsilon_{12} \}\), and then we have \(V(x_{t} ) > 0\) and

$$ \dot{V}(x_{t} ) \le \omega^{\text{T}} y $$

for any given \(\varepsilon \in (0,\varepsilon^{ * } ]\). According to Definition 1, the sliding mode dynamics (15)–(17) is passive.

We now show that the sliding mode dynamics with \(\omega (t) = 0\) is asymptotically stable. Reconsider the inequality (33), we have

$$ \dot{V}(x_{t} ) - \omega^{\text{T}} y \le \left( {\begin{array}{*{20}c} {x^{\text{T}} (t)} & {x^{\text{T}} (t - d)} & {\varphi^{\text{T}} } & {\omega^{\text{T}} } \\ \end{array} } \right)\frac{1}{2}\Theta_{\varepsilon } \left( {\begin{array}{*{20}c} {x^{\text{T}} (t)} & {x^{\text{T}} (t - d)} & {\varphi^{\text{T}} } & {\omega^{\text{T}} } \\ \end{array} } \right)^{{\text{T}}} $$

for any given \(\varepsilon \in (0,\varepsilon^{ * } ]\). Let \(\lambda_{\varepsilon } = \lambda_{\min } ( - \frac{1}{2}\Theta_{\varepsilon } )\), then \(\lambda_{\varepsilon } > 0\) for \(\varepsilon \in (0,\varepsilon^{ * } ]\). Furthermore, in case of \(\omega (t) = 0\), we obtain that

$$ \dot{V}(x_{t} ) \le - \lambda_{\varepsilon } ||\xi (t)||^{2} , $$

where \(\xi (t) = \left( {\begin{array}{*{20}c} {x^{\text{T}} (t)} & {x^{\text{T}} (t - d)} \\ \end{array} } \right)^{\text{T}}\). Therefore, the sliding mode dynamics is asymptotically stable for \(\varepsilon \in (0,\varepsilon^{ * } ]\). This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Y. Passivity-Based Sliding Mode Control for Lur’e Singularly Perturbed Time-Delay Systems with Input Nonlinearity. Circuits Syst Signal Process 41, 6007–6030 (2022). https://doi.org/10.1007/s00034-022-02086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02086-4

Keywords

Navigation