Skip to main content
Log in

Efficient Time-Varying q-Parameter Design for q-Incremental Least Mean Square Algorithm with Noisy Links

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The quantum calculus provides an extra degree of freedom to search the local and global minima by inducing a q-parameter. Motivated by this fact, a quantum calculus-based noisy links incremental least mean squares (NL-qILMS) algorithm is proposed. Moreover, for the proposed NL-qILMS, we also devised various time-varying techniques for the selection of the optimal q-parameter to improve the performance. Furthermore, the closed-form solutions for the steady-state mean square deviation, excess mean square deviation and mean square error are derived. The analytical results are validated through simulation. Finally, extensive simulations have been done to evaluate the performance of the proposed algorithm for various choices of optimal q-values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. For the sake of compactness, the proposed NL-qILMS algorithm with (12) is termed as qSD1-ILMS.

  2. The proposed NL-qILMS algorithm with (13) is termed as qSD2-ILMS.

  3. The proposed NL-qILMS algorithm with (14) is termed as qML-ILMS.

  4. The proposed NL-qILMS algorithm with (15) is termed as qSN-ILMS.

  5. The proposed NL-qILMS algorithm with (16) is termed as qP-ILMS.

  6. The matrix \(\hat{\mathbf{G}}_{k}(i)\) is decoupled as \(\mu _{k}{} \mathbf{G}_{k}(i)\) for the analysis.

  7. Here we dropped the time index for simplicity.

  8. Note that \(R_{\mathbf {x},k}=\lambda _{k} I\), \(S_{k} = \sigma _{r,k}^{2}I\), \(\bar{G}_{k}=g_{k}I\), additionally for small step-size \(\bar{F}_{k}\) is reduced to, \(\bar{F}_{k} \approx (1 - 2 \mu _{k} \lambda g_{k})I\) and \(\hat{g}_{k}(i)=\mu _{k,\mathrm{min}}\) as \(i\rightarrow \infty \).

References

  1. A. Ahmed, F.S. McFadden, R.K. Rayudu, q-calculus based extended kalman filter for the dynamic state estimation of a synchronous generator, in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia) (2016), pp. 1139–1144

  2. A. Ahmed, M. Moinuddin, U.M. Al-Saggaf, q-state space least mean family of algorithms. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0569-7

    Article  MATH  Google Scholar 

  3. A.U. Al-Saggaf, M. Arif, U.M. Al-Saggaf, M. Moinuddin, The q-normalized least mean square algorithm, in 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) (2016), pp. 1–6. https://doi.org/10.1109/ICIAS.2016.7824098

  4. U.M. Al-Saggaf, M. Moinuddin, M. Arif, A. Zerguine, The q-least mean squares algorithm. Signal Process. 111(C), 50–60 (2015)

    Article  Google Scholar 

  5. U.M. Al-Saggaf, M. Moinuddin, A. Zerguine, An efficient least mean squares algorithm based on q-gradient, in 2014 48th Asilomar Conference on Signals, Systems and Computers (2014), pp. 891–894. https://doi.org/10.1109/ACSSC.2014.7094580

  6. M. Arif, M. Moinuddin, I. Naseem, A.U. Alsaggaf, U.M. Al-Saggaf, Diffusion quantum-least mean square algorithm with steady-state analysis. Circuits Syst. Signal Process. 41, 3306–3327 (2022)

    Article  Google Scholar 

  7. M. Arif, I. Naseem, M. Ashraf, M. Moinuddin, Design of incremental optimum error nonlinearity for distributed networks, in 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT) (2017), pp. 1–5. https://doi.org/10.1109/ICIEECT.2017.7916525

  8. M. Arif, I. Naseem, M. Moinuddin, State-space fractional-least mean square algorithm, in 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) (2017), pp. 1–4. https://doi.org/10.1109/INTELLECT.2017.8277637

  9. M. Arif, I. Naseem, M. Moinuddin, U.M. Al-Saggaf, Design of optimum error nonlinearity for channel estimation in the presence of class-a impulsive noise, in 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) (2016), pp. 1–6. https://doi.org/10.1109/ICIAS.2016.7824137

  10. M. Arif, I. Naseem, M. Moinuddin, U.M. Al-Saggaf, Design of an intelligent q-lms algorithm for tracking a non-stationary channel. Arab. J. Sci. Eng. 43(6), 2793–2803 (2018). https://doi.org/10.1007/s13369-017-2883-6

    Article  Google Scholar 

  11. M. Arif, I. Naseem, M. Moinuddin, U.M. Al-Saggaf, Modified incremental lms with improved stability via convex combination of two adaptive filters. Circuits Syst. Signal Process. 38(9), 4245–4265 (2019). https://doi.org/10.1007/s00034-019-01061-w

    Article  Google Scholar 

  12. M. Arif, I. Naseem, M. Moinuddin, A.U. Alsaggaf, U.M. Al-Saggaf, Energy-efficient ssd-lms algorithm for state-space estimation in distributed networks. Digit. Signal Process. 122, 103,362 (2022). https://doi.org/10.1016/j.dsp.2021.103362

    Article  Google Scholar 

  13. M. Arif, I. Naseem, M. Moinuddin, M.N. Iqbal, Improved optimum error nonlinearities using Cramer–Rao bound estimation. Circuits Syst. Signal Process. 38(11), 5169–5186 (2019)

    Article  Google Scholar 

  14. M. Arif, I. Naseem, M. Moinuddin, S.S. Khan, M.M. Ammar, Adaptive noise cancellation using q-LMS, in 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT) (2017), pp. 1–4. https://doi.org/10.1109/ICIEECT.2017.7916527

  15. M. Arif, I. Naseem, S.S.U. Qadri, M. Moinnudin, Two-dimensional optimum error nonlinearity for image denoising, in 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) (2017), pp. 1–4. https://doi.org/10.1109/INTELLECT.2017.8277638

  16. G. Azarnia, A.A. Sharifi, Steady-state analysis of distributed incremental variable fractional tap-length lms adaptive networks. Wirel. Netw. 27, 4603–4614 (2021)

    Article  Google Scholar 

  17. M.O. Bin-Saeed, S.A. Pasha, A. Zerguine, A variable step-size incremental lms solution for low snr applications. Signal Process. 178, 107,730 (2021)

    Article  Google Scholar 

  18. M.O. Bin Saeed, A. Zerguine, An incremental variable step-size lms algorithm for adaptive networks. IEEE Trans. Circuits Syst. II Express Briefs 67(10), 2264–2268 (2020). https://doi.org/10.1109/TCSII.2019.2953199

    Article  Google Scholar 

  19. W.H.R. Chan, M. Wildemeersch, T.Q.S. Quek, Diffusion control in multi-agent networks, in 2015 54th IEEE Conference on Decision and Control (CDC) (2015), pp. 4190–4195. https://doi.org/10.1109/CDC.2015.7402872

  20. T. Ernst, The history of q-calculus and a new-method. U.U.D.M. Report 2000:16, Department of Mathematics, Uppsala University, Sweden (2000)

  21. F.H. Jackson, On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908)

    Article  Google Scholar 

  22. F.H. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  23. A. Khalili, M.A. Tinati, A. Rastegarnia, An incremental block lms algorithm for distributed adaptive estimation, in 2010 IEEE International Conference on Communication Systems (IEEE, 2010), pp. 493–496

  24. A. Khalili, M.A. Tinati, A. Rastegarnia, Performance analysis of distributed incremental lms algorithm with noisy links. Int. J. Distrib. Sens. Netw. 7(1), 756067 (2011)

    Article  Google Scholar 

  25. A. Khalili, M.A. Tinati, A. Rastegarnia, Amplify-and-forward scheme in incremental lms adaptive network with noisy links: minimum transmission power design. AEU Int. J. Electron. Commun. 66(3), 262–265 (2012)

    Article  Google Scholar 

  26. J. Koekoev, A note on the q-derivative operatorx. J. Math. Anal. Appl. 176, 627–634 (1993)

    Article  MathSciNet  Google Scholar 

  27. M. Korki, H. Zayyani, Weighted diffusion continuous mixed p-norm algorithm for distributed estimation in non-uniform noise environment. Signal Process. 164, 225–233 (2019)

    Article  Google Scholar 

  28. S. Liu, Y. Ma, Y. Huang, Sea clutter cancellation for passive radar sensor exploiting multi-channel adaptive filters. IEEE Sens. J. 19(3), 982–995 (2018)

    Article  Google Scholar 

  29. C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 3 (2006), pp. III–III. https://doi.org/10.1109/ICASSP.2006.1660721

  30. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  31. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008). https://doi.org/10.1109/TSP.2008.917383

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Mikhael, F. Wu, L. Kazovsky, G. Kang, L. Fransen, Adaptive filters with individual adaptation of parameters. IEEE Trans. Circuits Syst. 33(7), 677–686 (1986)

    Article  Google Scholar 

  33. S.K. Mishra, G. Panda, M.A.T. Ansary, B. Ram, On q-newton’s method for unconstrained multiobjective optimization problems. J. Appl. Math. Comput. 63(1), 391–410 (2020)

    Article  MathSciNet  Google Scholar 

  34. M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking [wireless sensor networks], in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3 (2004), p. 921. https://doi.org/10.1109/ICASSP.2004.1326696

  35. M.G. Rabbat, R.D. Nowak, Quantized incremental algorithms for distributed optimization. IEEE J. Sel. Areas Commun. 23(4), 798–808 (2005). https://doi.org/10.1109/JSAC.2005.843546

    Article  Google Scholar 

  36. A.H. Sayed, Adaptive Filters (Wiley-IEEE Press, Hoboken, 2008)

    Book  Google Scholar 

  37. T. Shan, T. Kailath, Adaptive algorithms with an automatic gain control feature. IEEE Trans. Circuits Syst. 35(1), 122–127 (1988). https://doi.org/10.1109/31.1709

    Article  Google Scholar 

  38. T. Shan, Y. Ma, R. Tao, S. Liu, Multi-channel nlms-based sea clutter cancellation in passive bistatic radar. IEICE Electron. Express p. 11-20140,872 (2014)

  39. P. Song, H. Zhao, Robust diffusion affine projection m-estimate algorithm for distributed estimation over network. IFAC-PapersOnLine 52(24), 290–293 (2019)

    Article  Google Scholar 

  40. A.C. Soterroni, R.L. Galski, F.M. Ramos, The q-gradient vector for unconstrained continuous optimization problems, in Operations Research Proceedings 2010. ed. by B. Hu, K. Morasch, S. Pickl, M. Siegle (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 365–370

  41. A.C. Soterroni, R.L. Galski, F.M. Ramos, The q-gradient method for continuous global optimization, in AIP Conference Proceedings, vol. 1558, no. 1 (2013), pp. 2389–2393 https://doi.org/10.1063/1.4826022

  42. N. Takahashi, I. Yamada, Link probability control for probabilistic diffusion least-mean squares over resource-constrained networks, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (2010), pp. 3518–3521. https://doi.org/10.1109/ICASSP.2010.5495952

  43. L. Xiao, S. Boyd, S. Lai, A space-time diffusion scheme for peer-to-peer least-squares estimation, in 2006 5th International Conference on Information Processing in Sensor Networks (2006), pp. 168–176. https://doi.org/10.1145/1127777.1127806

  44. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks (2005), pp. 63–70. https://doi.org/10.1109/IPSN.2005.1440896

  45. S. Yim, H. Lee, W. Song, A proportionate diffusion lms algorithm for sparse distributed estimation. IEEE Trans. Circuits Syst. II Express Briefs 62(10), 992–996 (2010)

    Article  Google Scholar 

  46. H. Zayyani, Robust minimum disturbance diffusion lms for distributed estimation. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 521–525 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Karachi Institute of Economics and Technology, Pakistan, to make this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Khan, S.S., Qadri, S.S.U. et al. Efficient Time-Varying q-Parameter Design for q-Incremental Least Mean Square Algorithm with Noisy Links. Circuits Syst Signal Process 41, 5699–5718 (2022). https://doi.org/10.1007/s00034-022-02048-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02048-w

Keywords

Navigation