Skip to main content
Log in

Synthesis of Subarrayed Large Linear Arrays by a Hybrid Genetic Algorithm Integrated with Convex Programming

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we devise a new hybrid method for pattern synthesis of large linear arrays. To simplify the beamforming network, the uniform linear array is divided into multiple non-overlapped subarrays with contiguous elements and is only weighted at subarrays. Unlike previous approaches, the proposed method introduces a special vector to specify the subarray partition and converts the subarray pattern synthesis to the problem of finding the optimal subarray partition and subarray weighting vectors simultaneously. To solve this problem efficiently, the genetic algorithm is utilized to find the optimal partition scheme from all possible subarray partitions. For the fixed subarray partition, the optimal subarray weighting vector is obtained by solving the convex sub-problem. Numerical results demonstrate the superiority of our method over the state-of-the-art algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Caorsi, A. Massa, M. Pastorino, A. Randazzo, Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans. Antennas Propag. 53(1), 372–376 (2005)

    Article  Google Scholar 

  2. J. Corcoles, M.A. Gonzalez, Efficient combined array thinning and weighting for pattern synthesis with a nested optimization scheme. IEEE Trans. Antennas Propag. 60(11), 5107–5117 (2012)

    Article  MathSciNet  Google Scholar 

  3. C. Cui, Y. Jiao, L. Zhang, L. Lu, H. Zhang, Synthesis of subarrayed monopluse arrays with contiguous elements using a DE algorithm. IEEE Trans. Antennas Propag. 65(8), 4340–4345 (2017)

    Article  Google Scholar 

  4. S.K. Goudos, K.A. Gotsis, K. Siakavara, E.E. Vafiadis, J.N. Sahalos, A multi-objective approach to subarrayed linear antenna arrays design based on memetic differential evolution. IEEE Trans. Antennas Propag. 61(6), 3042–3052 (2013)

    Article  MathSciNet  Google Scholar 

  5. M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex programming, version 2.1,” (2017). [Online]. https://www.cvxr.com/cvx

  6. R.L. Haupt, Optimized weighting of uniform subarrays of unequal sizes. IEEE Trans. Antennas Propag. 55(4), 1207–1210 (2007)

    Article  Google Scholar 

  7. T. Isernia, F.J.A. Pena, O.M. Bucci, M. D’Urso, J.F. Gomez, J.A. Rodriguez, A hybrid approach for the optimal synthesis of pencil beams through array antennas. IEEE Trans. Antennas Propag. 52(11), 2912–2918 (2004)

    Article  Google Scholar 

  8. J. Liang, X. Fan, H.C. So, D. Zhou, Array beampattern synthesis without specifying lobe level masks. IEEE Trans. Antennas Propag. 68(6), 4526–4539 (2020)

    Article  Google Scholar 

  9. P. Lopez, J.A. Rodriguez, F. Ares, E. Moreno, Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights. IEEE Trans. Antennas Propag. 49(11), 1606–1608 (2001)

    Article  Google Scholar 

  10. L. Manica, P. Rocca, A. Massa, On the synthesis of sub-arrayed planar array antennas for tracking radar applications. IEEE Antennas Wirel. Propag. Lett. 7, 599–602 (2008)

    Article  Google Scholar 

  11. L. Manica, P. Rocca, M. Pastorino, A. Massa, Boresight slope optimization of subarrayed linear arrays through the contiguous partition method. IEEE Antennas Wirel. Propag. Lett. 8, 253–257 (2009)

    Article  Google Scholar 

  12. L. Manica, P. Rocca, A. Massa, Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach. IEEE Trans. Antennas Propag. 57(6), 1684–1691 (2009)

    Article  Google Scholar 

  13. A. Massa, M. Pastorino, A. Randazzo, Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method. IEEE Antennas Wirel. Propag. Lett. 5, 155–158 (2006)

    Article  Google Scholar 

  14. D.A. McNamara, Synthesis of sub-arrayed monopulse linear arrays through matching of independently optimum sum and difference excitations. IEE Proc. H Microw. Antennas Propag. 135(5), 293–296 (1988)

    Article  Google Scholar 

  15. G. Oliveri, M. Salucci, A. Massa, Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver. IEEE Trans. Antennas Propag. 64(10), 4277–4287 (2016)

    Article  MathSciNet  Google Scholar 

  16. P. Rocca, L. Manica, A. Martini, A. Massa, Synthesis of large monopulse linear arrays through a tree-based optimal excitations matching. IEEE Antennas Wirel. Propag. Lett. 6, 436–439 (2007)

    Article  Google Scholar 

  17. P. Rocca, L. Manica, R. Azaro, A. Massa, A hybrid approach to the synthesis of subarrayed monopulse linear arrays. IEEE Trans. Antennas Propag. 57(1), 280–283 (2009)

    Article  Google Scholar 

  18. P. Rocca, M. D’Urso, L. Poli, Advanced strategy for large antenna array design with subarray-only amplitude and phase control. IEEE Antennas Wirel. Propag. Lett. 13, 91–94 (2014)

    Article  Google Scholar 

  19. P. Rocca, R.J. Mailloux, G. Toso, GA-based optimization of irregular subarray layouts for wideband phased arrays design. IEEE Antennas Wirel. Propag. Lett. 14, 131–134 (2015)

    Article  Google Scholar 

  20. P. Rocca, L. Poli, A. Polo, A. Massa, Optimal excitation matching strategy for sub-arrayed phased linear arrays generating arbitrary-shaped beams. IEEE Trans. Antennas Propag. 68(6), 4638–4647 (2020)

    Article  Google Scholar 

  21. Q. Shi, Z. Zheng, Y. Sun, Pattern synthesis of subarrayed large linear and planar arrays using \(k\)-means solution. IEEE Antennas Wirel. Propag. Lett. 20(5), 693–697 (2021)

    Article  Google Scholar 

  22. Z. Xiong, Z. Xu, L. Zhang, S. Xiao, Cluster analysis for the synthesis of subarrayed monopulse antennas. IEEE Trans. Antennas Propag. 62(4), 1738–1749 (2014)

    Article  MathSciNet  Google Scholar 

  23. X. Yang, W. Xi, Y. Sun, T. Zeng, T. Long, T.K. Sarkar, Optimization of subarray partition for large planar phased array radar based on weighted K-means clustering method. IEEE J. Sel. Top. Signal Process. 9(8), 1460–1468 (2015)

    Article  Google Scholar 

  24. X. Zhang, J. Liang, X. Fan, G. Yu, H.C. So, Reconfigurable array beampattern synthesis via conceptual sensor network modeling and computation. IEEE Trans. Antennas Propag. 68(6), 4512–4525 (2020)

    Article  Google Scholar 

  25. X. Zhao, Q. Yang, Y. Zhang, Synthesis of minimally subarrayed linear arrays via compressed sensing method. IEEE Antennas Wirel. Propag. Lett. 18(3), 487–491 (2019)

    Article  Google Scholar 

  26. Z. Zheng, Y. Fu, W. Wang, Sparse array beamforming design for coherently distributed sources. IEEE Trans. Antennas Propag. 69(5), 2628–2636 (2021)

    Article  Google Scholar 

  27. Z. Zheng, M. Fu, W. Wang, H.C. So, Symmetric displaced coprime array configurations for mixed near and far field source localization. IEEE Trans. Antennas Propag. 69(1), 465–477 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 62171089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Zheng, Z. & Wang, WQ. Synthesis of Subarrayed Large Linear Arrays by a Hybrid Genetic Algorithm Integrated with Convex Programming. Circuits Syst Signal Process 41, 5903–5913 (2022). https://doi.org/10.1007/s00034-022-02043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02043-1

Keywords

Navigation