Skip to main content
Log in

Iterative Maximum Likelihood FIR Filter for State-Space Models with Time-Stamped Delayed and Missing Data

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Time delay and missing data are the primary reasons for instability and weak showing of control systems. This paper proposes a new finite impulse response (FIR) filter for the state-space models with time-stamped delayed and missing data. By reconstructing the original state-space model, the delayed and missing measurement model is transformed into an ordinary one with new parameters. By processing and calculating in both slow batch and quick iterative forms, a maximum likelihood FIR state estimator is developed. Simulation results based on the harmonic model and the drifting stochastic resonator are provided to demonstrate that the proposed method can estimate the control systems with time delay and missing data well and show better robustness than the existing methods when the statistics of the measurement noise are unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Adiga, H. Janardhan, B. Vijeth, et al., Synergy of delayed states and missing data in Wireless Sensor Networks using Kalman Filters, in 2015 International Conference on Power and Advanced Control Engineering (ICPACE) (2015), pp. 152–156

  2. Ki. C. Ahn, Strictly passive FIR filtering for state-space models with external disturbance. AEUE Int. J. Electron. Commun. 66(11), 944–948 (2012)

    Article  Google Scholar 

  3. Y. Bar-Shalom, Update with out-of-sequence measurements in tracking: exact solution. IEEE Trans. Aerosp. Electron. Syst. 38(3), 769–777 (2002)

    Article  Google Scholar 

  4. D. Chen, L. Xu, J. Du, Optimal filtering for systems with finite-step autocorrelated process noises, random one-step sensor delay and missing measurements. Commun. Nonlinear Sci. Numer. Simul. 32, 211–224 (2016)

    Article  MathSciNet  Google Scholar 

  5. H. Dong, Z. Wang, D. Ho et al., Variance-constrained H-infinity filtering for a class of nonlinear time-varying systems with multiple missing measurements: The finite-horizon case. IEEE Trans. Signal Process. 58(5), 2534–2543 (2010)

    Article  MathSciNet  Google Scholar 

  6. X. He, D. Zhou, Robust H-infinity filtering for time-delay systems with missing measurements: a parameter-dependent approach. J. Control Theory Appl. 5(4), 336–344 (2007)

    Article  MathSciNet  Google Scholar 

  7. A. Hermoso-Carazo, J. Linares-Pérez, Extended and unscented filtering algorithms using one-step randomly delayed observations. Appl. Math. Comput. 190(2), 1375–1393 (2007)

    MathSciNet  MATH  Google Scholar 

  8. J.P. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems. Proc. IEEE 95, 138–162 (2007)

    Article  Google Scholar 

  9. W.H. Kwon, S. Han, Receding Horizon Control: Model Predictive Control for State Models (Springer, Berlin, 2005)

    Google Scholar 

  10. W.H. Kwon, P.S. Kim, P. Park, A receding horizon Kalman FIR filter for discrete time-invariant systems. IEEE Trans. Autom. Control 44(9), 1787–1791 (1999)

    Article  MathSciNet  Google Scholar 

  11. M. Moayedi, Y.K. Foo, Y.C. Soh, Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements. IEEE Trans. Signal Process. 58(3), 1577–1588 (2009)

    Article  MathSciNet  Google Scholar 

  12. R. Moose, T. Dailey, Adaptive underwater target tracking using passive multipath time-delay measurements. IEEE Trans. Acoust. Speech Signal Process. 33(4), 778–787 (1985)

    Article  Google Scholar 

  13. R.M. Palhares, C.E.D. Souza, P.L.D. Peres, Robust H-infinity filtering for uncertain discrete-time state-delayed systems. IEEE Trans. Signal Process. 49(8), 1696–1703 (2001)

    Article  MathSciNet  Google Scholar 

  14. A. Pila, U. Shaked, C.E. de Souza, H-infinity filtering for continuous-time linear systems with delay. IFAC Proc. 29(1), 4476–4481 (1996)

    Google Scholar 

  15. Z. Quan, S. Han, W.H. Kwon, A robust FIR filter for linear discrete-time state-space signal models with uncertainties. IEEE Signal Process. Lett. 14(8), 553–556 (2007)

    Article  Google Scholar 

  16. F. Ramirez-Echeverria, A. Sarr, Y.S. Shmaliy, Optimal memory for discrete-time FIR filters in state-space. IEEE Trans. Signal Process. 62(3), 557–561 (2014)

    Article  MathSciNet  Google Scholar 

  17. A. Ray, Introduction to networking for integrated control systems. IEEE Control Syst. Mag. 9(1), 76–79 (1989)

    Article  Google Scholar 

  18. H. Rezaei, S. Mohamed, R.M. Esfanjani, et al., Improved robust Kalman filtering for uncertain systems with missing measurements, in International Conference on Neural Information Processing (2014), pp. 509–518

  19. K. Senne, Stochastic processes and filtering theory. IEEE Trans. Autom. Control 17(5), 752–753 (2003)

    Article  Google Scholar 

  20. Y.S. Shmaliy, Unbiased FIR filtering of discrete-time polynomial state-space models. IEEE Trans. Signal Process. 57(4), 1241–1249 (2009)

    Article  MathSciNet  Google Scholar 

  21. Y.S. Shmaliy, Linear optimal FIR estimation of discrete time-invariant state-space models. IEEE Trans. Signal Process. 58(6), 3086–3096 (2010)

    Article  MathSciNet  Google Scholar 

  22. Y.S. Shmaliy, An iterative Kalman-like algorithm ignoring noise and initial conditions. IEEE Trans. Signal Process. 59(6), 2465–2473 (2011)

    Article  MathSciNet  Google Scholar 

  23. Y.S. Shmaliy, Suboptimal FIR filtering of nonlinear models in additive white Gaussian noise. IEEE Trans. Signal Process. 60(10), 5519–5527 (2012)

    Article  MathSciNet  Google Scholar 

  24. A.K. Singh, P. Date, S. Bhaumik, A modified Bayesian filter for randomly delayed measurements. IEEE Trans. Autom. Control 62(1), 419–424 (2016)

    Article  MathSciNet  Google Scholar 

  25. B. Sinopoli, L. Schenato, M. Franceschetti et al., Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 1(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  26. K. Uribe-Murcia, Y.S. Shmaliy, Unbiased FIR filtering of uncertain systems with randomly binary-delayed and missing data, in 2020 24th International Conference on Circuits (Systems, Communications and Computers (CSCC) (2020), pp. 153–158

  27. K. Uribe-Murcia, Y.S. Shmaliy, A. Andrade-Lucio, GPS-based tracking over WSNs with delayed and missing data using UFIR filtering, in MATEC Web of Conferences, vol. 210, no. 5 (2018), p. 05,002

  28. K.J. Uribe-Murcia, Y.S. Shmaliy, C.K. Ahn et al., Unbiased FIR filtering for time-stamped discretely delayed and missing data. IEEE Trans. Autom. Control 65(5), 2155–2162 (2019)

    Article  MathSciNet  Google Scholar 

  29. Z. Wang, D.W. Ho, X. Liu, Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II Express Briefs 51(6), 320–326 (2004)

    Article  Google Scholar 

  30. J. Zhang, Y. Xia, R. Tao, New results on H-infinity filtering for fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 17(1), 128–137 (2008)

    Article  Google Scholar 

  31. S. Zhao, Y.S. Shmaliy, F. Liu, Fast computation of discrete optimal FIR estimates in white gaussian noise. IEEE Signal Process. Lett. 22(6), 718–722 (2014)

    Article  Google Scholar 

  32. S. Zhao, Y.S. Shmaliy, F. Liu, Fast Kalman-like optimal unbiased FIR filtering with applications. IEEE Trans. Signal Process. 64(9), 2284–2297 (2016)

    Article  MathSciNet  Google Scholar 

  33. S. Zhao, Y.S. Shmaliy, F. Liu et al., Unbiased, optimal, and in-betweens: the trade-off in discrete finite impulse response filtering. IET Signal Process. 10(4), 325–334 (2016)

    Article  Google Scholar 

  34. S. Zhao, Y.S. Shmaliy, C.K. Ahn, Iterative maximum likelihood FIR estimation of dynamic systems with improved robustness. IEEE/ASME Trans. Mechatron. 23(3), 1467–1476 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyi Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (61973136), the Natural Science Foundation of Jiangsu Province (BK20211528).

Appendix A Iterative ML FIR Algorithms

Appendix A Iterative ML FIR Algorithms

The derivations are obtained by following [34]. To be clarity, we do not present all the details and only give some essential formulas. Accordingly, we introduce

$$\begin{aligned} {\acute{\mathbf{C}}}_{i}&= \mathbf{C}_{i}^\mathrm{T}{\Pi }_{i}^{-1}{} \mathbf{C}_{i}, \end{aligned}$$
(A1)
$$\begin{aligned} {\varvec{\Pi }}_{i}^{-1}&= {\hat{\varvec{\Pi }}}_{i}^{-1}{\Lambda }_{i}^{-1},\end{aligned}$$
(A2)
$$\begin{aligned} {} \mathbf{P}_{i}&= {\bar{\mathcal {G}}}_{i}-\mathbf{A}\,{\mathcal {G}}_{i-1}{\varvec{\Pi }}_{i-1}^{-1}\mathbf{\mathcal {G}}_{i-1}^\mathrm{T}{} \mathbf{A}^\mathrm{T},\end{aligned}$$
(A3)
$$\begin{aligned} {} \mathbf{K}_{i}&= \begin{bmatrix} \mathbf{L}_{i}&\mathbf{A}{} \mathbf{K}_{i-1}-\mathbf{L}_{i}{\bar{\mathbf{C}}}_{\bar{m}+i}{} \mathbf{A}{} \mathbf{K}_{i-1} \end{bmatrix}, \end{aligned}$$
(A4)

where \(\mathbf{L}_{i}={\bar{\mathbf{L}}}_{i}+{\tilde{\mathbf{L}}}_{i}\) and

$$\begin{aligned} {\bar{\mathbf{L}}}_{i}&= \mathbf{P}_{i}{\bar{\mathbf{C}}}_{\bar{m}+i}^\mathrm{T}({\bar{\mathbf{C}}}_{\bar{m}+i}{} \mathbf{P}_{i}{\bar{\mathbf{C}}}_{\bar{m}+i}^\mathrm{T}+{\bar{\mathbf{R}}}_{\bar{m}+i})^{-1}, \end{aligned}$$
(A5)
$$\begin{aligned} {\tilde{\mathbf{L}}}_{i}&= (\mathbf{I}-{\bar{\mathbf{L}}}_{i}{\bar{\mathbf{C}}}_{\bar{m}+i}){\bar{\mathbf{P}}}_{i}{\acute{\mathbf{C}}}_{i}^{-1}{\bar{\mathbf{P}}}_{i}^\mathrm{T}{\bar{\mathbf{C}}}_{\bar{m}+i}^\mathrm{T}({\bar{\mathbf{C}}}_{\bar{m}+i}{} \mathbf{P}_{i}{\bar{\mathbf{C}}}_{\bar{m}+i}^\mathrm{T}+{\bar{\mathbf{R}}}_{\bar{m}+i})^{-1}, \end{aligned}$$
(A6)
$$\begin{aligned} {\bar{\mathbf{P}}}_{i}&= \mathbf{A}^{i}-\mathbf{A}{\mathcal {G}}_{i-1}{\varvec{\Pi }}_{i-1}^{-1}{} \mathbf{C}_{i-1}, \end{aligned}$$
(A7)

where improvements are aiming at time delay and missing data having shown in the formulas above.

Next, for computing (34) iteratively, \({\hat{\mathbf{x}}}_{i}\) can be rewritten by (34), (35) and (36) in an iterative index i as

$$\begin{aligned} {\hat{\mathbf{x}}}_{i} = {\tilde{\mathbf{x}}}_{i}+{\bar{\mathbf{x}}}_{i}+{\check{\mathbf{x}}}_{i}, \end{aligned}$$
(A8)

where i is a positive integer ranging from \(\phi +1\) to N and

$$\begin{aligned} {\tilde{\mathbf{x}}}_{i}= & {} \mathbf{K}_{i}{} \mathbf{Y}_{\bar{m}+i,m}, \end{aligned}$$
(A9)
$$\begin{aligned} {\bar{\mathbf{x}}}_{i}= & {} ({\bar{\mathbf{B}}}_{i}-\mathbf{K}_{i}{} \mathbf{D}_{i})\mathbf{U}_{\bar{m}+i-1,\bar{m}}, \end{aligned}$$
(A10)
$$\begin{aligned} {\check{\mathbf{x}}}_{i}= & {} -\mathbf{K}_{i}{\check{\mathbf{D}}}_{i}{} \mathbf{U}_{p_i,p_m}. \end{aligned}$$
(A11)

Formula (A9) and (A10) in iterative form can be obtained from [34] as follows:

$$\begin{aligned} {\tilde{\mathbf{x}}}_{i} = \mathbf{A}{\tilde{\mathbf{x}}}_{i-1}+\mathbf{L}_{i}(\mathbf{y}_{\bar{m}+i}-{ \bar{\mathbf{C}}}_{\bar{m}+i}{} \mathbf{A}{{\tilde{\mathbf{x}}}_{i-1}}), \end{aligned}$$
(A12)
$$\begin{aligned} {\bar{\mathbf{x}}}_{i} = (\mathbf{I}-\mathbf{L}_{i} \bar{\mathbf{C}}_{\bar{m}+i})(\mathbf{A}{\bar{\mathbf{x}}}_{i}+\mathbf{B}\mathbf{u}_{\bar{m}+i-1}). \end{aligned}$$
(A13)

To find a recursion for \({\check{\mathbf{x}}}_{i}\) given by (A11), by referring (A4) and invoking matrices

$$\begin{aligned} {\check{\mathbf{D}}}_{i}&= \begin{bmatrix} {\bar{\mathbf{D}}}_{\bar{m}+i} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad {\check{\mathbf{D}}}_{i-1} \end{bmatrix}, \end{aligned}$$

(A11) can be transformed to

$$\begin{aligned} {\check{\mathbf{x}}}_{i}= & {} \mathbf{A}{\check{\mathbf{x}}}_{i-1}-\mathbf{L}_{i}({\bar{\mathbf{D}}}_{\bar{m}+i}{} \mathbf{U}_{p_i,\bar{m}+i-1}+{\bar{\mathbf{C}}}_{\bar{m}+i}{} \mathbf{A}{\check{\mathbf{x}}}_{i-1}). \end{aligned}$$
(A14)

Finally, by combining (A12), (A13) and (A14), the recursion for \({\hat{\mathbf{x}}}_{i}\) can be rewritten by \({\hat{\mathbf{x}}}^{-}_{i} = \mathbf{A}{\hat{\mathbf{x}}}_{i-1}+\mathbf{B}{} \mathbf{u}_{\bar{m}+i-1}\) as

$$\begin{aligned} {\hat{\mathbf{x}}}_{i}= & {} {\hat{\mathbf{x}}}_{i}^{-}+\mathbf{L}_{i}(\mathbf{y}_{\bar{m}+i}-{\bar{\mathbf{C}}}_{\bar{m}+i}{\hat{\mathbf{x}}}_{i}^{-}-{\bar{\mathbf{D}}}_{\bar{m}+i}{} \mathbf{U}_{p_i,\bar{m}+i-1}). \end{aligned}$$
(A15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhao, S., Luan, X. et al. Iterative Maximum Likelihood FIR Filter for State-Space Models with Time-Stamped Delayed and Missing Data. Circuits Syst Signal Process 41, 5065–5083 (2022). https://doi.org/10.1007/s00034-022-02021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02021-7

Keywords

Navigation