Skip to main content
Log in

High Efficiency and High Output Power HFET GaN Doherty Power Amplifier with Linearity Region Extension for Wireless Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

High efficiency and high gain Doherty power amplifier (DPA) with high output power is proposed in this paper for wireless mobile applications in the UHF band. The proposed structure consists of two conventional power amplifiers, class-AB as the carrier amplifier and class-C as the auxiliary amplifier. Two similar transistors of HFET GaN technology and λ/4 micro-strip lines to model the inductors and input/output matching networks are employed as the main elements of the proposed structure. Past matching network and optimal power divider are also used to obtain high improvements in the suggested DPA. Using the proposed structure, return loss reduction, efficiency and gain increasing and bandwidth property improvement have been achieved compared to other efficient works in this filed. The proposed DPA has 50–67.3% drain efficiency at the frequency of 2 GHz, high gain as 18.1 dB, saturation output power as 46.91 dBm and output power at P-1 dB point as 43.37 dBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. C.-T. Chen et al., Kahn envelope elimination and restoration technique using injection-locked oscillators. In 2012 IEEE/MTT-S International Microwave Symposium Digest. (IEEE, 2012)

  2. S. Choudhary, K. Aparna, M.R. Sanjeev, Linear CMOS power amplifier for WiMAX application (2017)

  3. X.-H. Fang, L. Hao-Yu, M.C. Kwok-Keung, Extended efficiency range, equal-cell Doherty amplifier design using explicit circuit model. IEEE Microwave Wirel. Compon. Lett. 27(5), 497–499 (2017)

    Article  Google Scholar 

  4. X.-H. Fang et al., Two-way Doherty power amplifier efficiency enhancement by incorporating transistors’ nonlinear phase distortion. IEEE Microwave Wirel. Compon. Lett. 28(2), 168–170 (2018)

    Article  Google Scholar 

  5. A. Ghahremani, A. Anne-Johan, N. Bram, Outphasing class-E power amplifiers: from theory to back-off efficiency improvement. IEEE J. Solid-State Circuits 53(5), 1374–1386 (2018)

    Article  Google Scholar 

  6. M.R. Hasin, K. Jennifer, Optimized load trajectory for finite peaking off-state impedance-based Doherty power amplifiers. IEEE Microwave Wirel. Compon. Lett. 29(7), 486–488 (2019)

    Article  Google Scholar 

  7. M.R. Hasin, K. Jennifer, Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans. Microw. Theory Tech. 67(8), 3455–3463 (2019)

    Article  Google Scholar 

  8. T. Hwang et al., Nonlinearity modeling of a Chireix outphasing power amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 62(12), 2898–2907 (2015)

    Article  MathSciNet  Google Scholar 

  9. IPC, I. Generic Standard on Printed Board Design. IPC-2221 (1998)

  10. H. Jang et al., RF-input self-outphasing Doherty-Chireix combined amplifier. IEEE Trans. Microw. Theory Tech. 64(12), 4518–4534 (2016)

    Article  Google Scholar 

  11. P. Jia, Y. Fei, H. Songbai, A 1.8–3.4-GHz bandwidth-improved reconfigurable mode Doherty power amplifier utilizing switches. IEEE Microwave Wirel. Compon. Lett. 30(1), 102–105 (2019)

    Article  Google Scholar 

  12. W. Kong et al., Bandwidth extension of three-way Doherty power amplifier with reactance compensation using parallel peaking amplifiers. IEEE Access (2021)

  13. C. Liang et al., Wideband two-way hybrid Doherty outphasing power amplifier. IEEE Trans. Microwave Theory Tech. (2020)

  14. G. Naah et al., Harmonic-tuned continuum mode active load modulation output combiner for the design of broadband asymmetric Doherty power amplifiers. IET Microwaves Antennas Propag. 13(8), 1226–1234 (2019)

    Article  Google Scholar 

  15. A. Nasri et al., Design of a wideband Doherty power amplifier with high efficiency for 5G application. Electronics 10(8), 873 (2021)

    Article  Google Scholar 

  16. A.R. Qureshi et al., A 112W GaN dual input Doherty-outphasing power amplifier. In: 2016 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2016)

  17. J.J.M. Rubio et al., Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method. IEEE Trans. Microw. Theory Tech. 66(3), 1319–1327 (2017)

    Article  Google Scholar 

  18. C. Shen et al., A 3.3–4.3-GHz high-efficiency broadband doherty power amplifier. IEEE Microwave Wirel. Compon. Lett. 30(11), 1081–1084 (2020)

    Article  Google Scholar 

  19. A. Springer, R. Weigel, RF microelectronics for W-CDMA mobile communication systems. Electron. Commun. Eng. J. 14(3), 92–100 (2002)

    Article  Google Scholar 

  20. Sun, Y, Sichun D. A 20.5 dBm outphasing class-F PA with Chireix architecture at 3.5 GHz for RF transmitter front-end. In: IOP Conference Series: Materials Science and Engineering. vol. 717. No. 1 (IOP Publishing, 2020).

  21. F. Wang, D.F. Kimball, D.Y. Lie, P.M. Asbeck, L.E. Larson, A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier. IEEE J. Solid-State Circuits 42(6), 1271–1281 (2007)

    Article  Google Scholar 

  22. C. Yu, F. Jun, Z. Dixian, A 28-GHz Doherty power amplifier with a compact transformer-based quadrature hybrid in 65-nm CMOS. IEEE Trans. Circuits Syst. II Exp. Briefs (2021)

  23. Z. Zhang, C. Zhiqun, L. Guohua, A power amplifier with large high-efficiency range for 5G communication. Sensors 20(19), 5581 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamid Zahedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangarshahi, A.N., Zahedi, A. High Efficiency and High Output Power HFET GaN Doherty Power Amplifier with Linearity Region Extension for Wireless Applications. Circuits Syst Signal Process 41, 2503–2521 (2022). https://doi.org/10.1007/s00034-021-01919-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01919-y

Keywords

Navigation