Skip to main content
Log in

Wideband MIMO Radar Transmit Beampattern Synthesis via Majorization–Minimization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We consider the design of constant-modulus waveforms for wideband multiple-input multiple-output radar. The aim is to match a desired transmit beampattern. To tackle the non-convex design problem, we develop an iterative algorithm, which is based on cyclic optimization and majorization–minimization. We prove that the sequence of the objective values of the proposed algorithm has guaranteed convergence. Moreover, we can obtain closed-form solutions for the associated optimization problems at every iteration. Furthermore, the proposed method can be implemented without matrix inversion and hence is computationally efficient. Simulation results demonstrate that the performance of the proposed algorithm is better than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. S. Ahmed, M. Alouini, MIMO radar transmit beampattern design without synthesising the covariance matrix. IEEE Trans. Signal Process. 62(9), 2278–2289 (2014). https://doi.org/10.1109/TSP.2014.2310435

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Aldayel, V. Monga, M. Rangaswamy, Tractable transmit MIMO beampattern design under a constant modulus constraint. IEEE Trans. Signal Process. 65(10), 2588–2599 (2017)

    Article  MathSciNet  Google Scholar 

  3. K. Alhujaili, V. Monga, M. Rangaswamy, Transmit MIMO radar beampattern design via optimization on the complex circle manifold. IEEE Trans. Signal Process. 67(13), 3561–3575 (2019). https://doi.org/10.1109/TSP.2019.2914884

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Aubry, V. Carotenuto, A. De Maio, A. Farina, L. Pallotta, Optimization theory-based radar waveform design for spectrally dense environments. IEEE Aerosp. Electr. Syst. Mag. 31(12), 14–25 (2016)

    Article  Google Scholar 

  5. A. Aubry, A. De Maio, A. Zappone, M. Razaviyayn, Z. Luo, A new sequential optimization procedure and its applications to resource allocation for wireless systems. IEEE Trans. Signal Process. 66(24), 6518–6533 (2018)

    Article  MathSciNet  Google Scholar 

  6. A. Aubry, M. Lops, A.M. Tulino, L. Venturino, On MIMO detection under non-gaussian target scattering. IEEE Trans Inf Theory 56(11), 5822–5838 (2010)

    Article  MathSciNet  Google Scholar 

  7. A. Aubry, A.D. Maio, M.A. Govoni, L. Martino, On the design of multi-spectrally constrained constant modulus radar signals. IEEE Trans Signal Process 68, 2231–2243 (2020)

    Article  MathSciNet  Google Scholar 

  8. A. Aubry, A.D. Maio, Y. Huang, MIMO radar beampattern design via PSL/ISL optimization. IEEE Trans Signal Process 64(15), 3955–3967 (2016)

    Article  MathSciNet  Google Scholar 

  9. V. Carotenuto, A. Aubry, A.D. Maio, N. Pasquino, A. Farina, Assessing agile spectrum management for cognitive radar on measured data. IEEE Aerosp. Electr. Syst. Mag. 35(6), 20–32 (2020). https://doi.org/10.1109/MAES.2019.2960904

    Article  Google Scholar 

  10. Z. Cheng, Z. He, S. Zhang, J. Li, Constant modulus waveform design for MIMO radar transmit beampattern. IEEE Trans. Signal Process. 65(18), 4912–4923 (2017). https://doi.org/10.1109/TSP.2017.2718976

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Cui, L. Kong, X. Yang, Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter. Circuits Syst. Signal Process. 31(4), 1407–1422 (2012). https://doi.org/10.1007/s00034-011-9381-y

    Article  MathSciNet  Google Scholar 

  12. G. Cui, H. Li, M. Rangaswamy, MIMO radar waveform design with constant modulus and similarity constraints. IEEE Trans. Signal Process. 62(2), 343–353 (2014). https://doi.org/10.1109/TSP.2013.2288086

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Cui, X. Yu, V. Carotenuto, L. Kong, Space-time transmit code and receive filter design for colocated MIMO radar. IEEE Trans. Signal Process. 65(5), 1116–1129 (2017)

    Article  MathSciNet  Google Scholar 

  14. G. Cui, X. Yu, M. Piezzo, L. Kong, Constant modulus sequence set design with good correlation properties. Signal Processing 139(Supplement C), 75–85 (2017)

  15. A. De Maio, M. Lops, Design principles of MIMO radar detectors. IEEE Trans. Aerosp. Electr. Syst. 43(3), 886–898 (2007)

    Article  Google Scholar 

  16. A. De Maio, M. Lops, L. Venturino, Diversity-integration tradeoffs in MIMO detection. IEEE Trans. Signal Process. 56(10), 5051–5061 (2008)

    Article  MathSciNet  Google Scholar 

  17. D.R Fuhrmann, G. San Antonio, Transmit beamforming for MIMO radar systems using partial signal correlation. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004., vol. 1, pp. 295–299 Vol.1 (2004). 10.1109/ACSSC.2004.1399140

  18. H. He, P. Stoica, J. Li, Designing unimodular sequence sets with good correlations-including an application to MIMO radar. IEEE Trans. Signal Process. 57(11), 4391–4405 (2009)

    Article  MathSciNet  Google Scholar 

  19. H. He, P. Stoica, J. Li, Wideband MIMO systems: Signal design for transmit beampattern synthesis. IEEE Trans. Signal Process. 59(2), 618–628 (2011). https://doi.org/10.1109/TSP.2010.2091410

    Article  MathSciNet  MATH  Google Scholar 

  20. D.R. Hunter, K. Lange, A tutorial on MM algorithms. Am. Stat. 58(1), 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  21. S.M. Karbasi, A. Aubry, V. Carotenuto, M.M. Naghsh, M.H. Bastani, Knowledge-based design of space time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference. IET Radar Sonar Nav. 9(8), 1124–1135 (2015)

    Article  Google Scholar 

  22. J. Li, P. Stoica, MIMO radar with colocated antennas : Review of some recent work. IEEE Signal Process. Mag. 24(5), 106–114 (2008)

    Article  Google Scholar 

  23. J. Li, P. Stoica, MIMO Radar Signal Processing (Wiley, Hoboken, NJ, 2009).

    Google Scholar 

  24. J. Li, X. Zhang, Unitary subspace-based method for angle estimation in bistatic MIMO radar. Circuits Syst. Signal Process. 33(2), 501–513 (2014). https://doi.org/10.1007/s00034-013-9653-9

    Article  MathSciNet  Google Scholar 

  25. N. Li, G. Cui, L. Kong, X. Yang, MIMO radar moving target detection against compound-Gaussian clutter. Circuits Syst. Signal Process. 33(6), 1819–1839 (2014). https://doi.org/10.1007/s00034-013-9718-9

    Article  Google Scholar 

  26. J. Lipor, S. Ahmed, M. Alouini, Fourier-based transmit beampattern design using MIMO radar. IEEE Trans. Signal Process. 62(9), 2226–2235 (2014). https://doi.org/10.1109/TSP.2014.2307838

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Liu, S. Zhou, W. Liu, J. Zheng, H. Liu, J. Li, Tunable adaptive detection in colocated MIMO radar. IEEE Trans. Signal Process. 66(4), 1080–1092 (2018)

    Article  MathSciNet  Google Scholar 

  28. Z.Q. Luo, W.k. Ma, A. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Proces. Mag. 27(4), 20 – 34 (2010). 10.1109/MSP.2010.936019

  29. M. Razaviyayn, M. Hong, Z.Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2012)

    Article  MathSciNet  Google Scholar 

  30. G. San Antonio, D.R. Fuhrmann, Beampattern synthesis for wideband MIMO radar systems. In: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 105–108. IEEE (2005)

  31. C. Shi, F. Wang, M. Sellathurai, J. Zhou, Low probability of intercept-based distributed MIMO radar waveform design against barrage jamming in signal-dependent clutter and coloured noise. IET Signal Process. 13(4), 415–423 (2019). https://doi.org/10.1049/iet-spr.2018.5212

    Article  Google Scholar 

  32. J. Song, P. Babu, D.P. Palomar, Optimization methods for designing sequences with low autocorrelation sidelobes. IEEE Trans. Signal Process. 63(15), 3998–4009 (2015). https://doi.org/10.1109/TSP.2015.2425808

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Song, P. Babu, D.P. Palomar, Sequence set design with good correlation properties via majorization-minimization. IEEE Trans. Signal Process. 64(11), 2866–2879 (2016)

    Article  MathSciNet  Google Scholar 

  34. P. Stoica, J. Li, Y. Xie, On probing signal design for MIMO radar. IEEE Trans. Signal Process. 55(8), 4151–4161 (2007)

    Article  MathSciNet  Google Scholar 

  35. P. Stoica, J. Li, X. Zhu, Waveform synthesis for diversity-based transmit beampattern design. IEEE Trans. Signal Process. 56(6), 2593–2598 (2008). https://doi.org/10.1109/TSP.2007.916139

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Stoica, Y. Selen, Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Process. Mag. 21(1), 112–114 (2004). https://doi.org/10.1109/MSP.2004.1267055

    Article  Google Scholar 

  37. B. Tang, J. Li, Spectrally constrained MIMO radar waveform design based on mutual information. IEEE Trans. Signal Process. 67(3), 821–834 (2019)

    Article  MathSciNet  Google Scholar 

  38. B. Tang, J. Liang, Efficient algorithms for synthesizing probing waveforms with desired spectral shapes. IEEE Trans. Aerosp. Electr. Syst. 55(3), 1174–1189 (2019). https://doi.org/10.1109/TAES.2018.2876585

    Article  Google Scholar 

  39. B. Tang, M.M. Naghsh, J. Tang, Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference. IEEE Trans. Signal Process. 63(14), 3783–3796 (2015)

    Article  MathSciNet  Google Scholar 

  40. B. Tang, P. Stoica, Information-theoretic waveform design for MIMO radar detection in range-spread clutter. Signal Process. 182, 107961 (2021)

    Article  Google Scholar 

  41. B. Tang, J. Tang, Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing. IEEE Trans. Signal Process. 64(18), 4707–4722 (2016)

    Article  MathSciNet  Google Scholar 

  42. B. Tang, J. Tang, Y. Peng, MIMO radar waveform design in colored noise based on information theory. IEEE Trans. Signal Process. 58(9), 4684–4697 (2010)

    Article  MathSciNet  Google Scholar 

  43. B. Tang, J. Tang, Y. Zhang, Z. Zheng, Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar. Signal Process. 93(5), 1349–1357 (2013)

    Article  Google Scholar 

  44. B. Tang, J. Tuck, P. Stoica, Polyphase waveform design for MIMO radar space time adaptive processing. IEEE Trans. Signal Process. 68, 2143–2154 (2020)

    Article  MathSciNet  Google Scholar 

  45. R. Varadhan, C. Roland, Simple and globally convergent methods for accelerating the convergence of any EM algorithm. Scand. J. Stat. 35(2), 335–353 (2008)

    Article  MathSciNet  Google Scholar 

  46. J. Yang, Z. Qiu, W. Jiang, X. Li, Poly-phase codes optimisation for multi-input-multiout-put radars. IET Signal Process. 7(2), 93–100 (2013). https://doi.org/10.1049/iet-spr.2012.0195

    Article  MathSciNet  Google Scholar 

  47. G. Yu, J. Liang, J. Li, B. Tang, Sequence set design with accurately controlled correlation properties. IEEE Trans. Aerosp. Electr. Syst. 54(6), 3032–3046 (2018)

    Article  Google Scholar 

  48. X. Yu, G. Cui, J. Yang, L. Kong, J. Li, Wideband MIMO radar waveform design. IEEE Trans. Signal Process 67(13), 3487–3501 (2019). https://doi.org/10.1109/TSP.2019.2916732

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Yu, G. Cui, T. Zhang, L. Kong, Constrained transmit beampattern design for colocated MIMO radar. Signal Process. 144, 145–154 (2018)

    Article  Google Scholar 

  50. X. Yu, J. Yang, G. Cui, L. Kong, Constant modulus waveform design for wideband MIMO radar beampattern. In: 2019 IEEE Radar Conference (RadarConf), pp 1–5 (2019). 10.1109/RADAR.2019.8835675

  51. G. Zheng, D. Zhang, BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole. IET Signal Process. 12(1), 113–118 (2018). https://doi.org/10.1049/iet-spr.2017.0018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61671453 and 61801500, the Anhui Provincial Natural Science Foundation under Grant 1908085QF252, and the Young Elite Scientist Sponsorship Program of CAST under Grant 17-JCJQ-QT-041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Note that

$$\begin{aligned} \mathbf{{F}}_{p_1}^H\mathbf{{A}}_{p_1}^H{{\mathbf{{A}}}_{p_1}}{\mathbf{{F}}_{p_1}}&= \left( {\sum \limits _{k_1 = 1}^{K _1} {{\mathbf{{a}}_{k_1p_1}}{} \mathbf{{a}}_{k_1p_1}^H} \otimes \mathbf{{e}}_{p_1}^*} \right) \left( {{\mathbf{{I}}_M} \otimes {\mathbf{{e}}_{p_1}^T}} \right) \nonumber \\&= \sum \limits _{k_1 = 1}^{K_1} {{\mathbf{{a}}_{k_1p_1}}{} \mathbf{{a}}_{k_1p_1}^H} \otimes \left( {\mathbf{{e}}_{p_1}^*{\mathbf{{e}}_{p_1}^T}} \right) . \end{aligned}$$
(40)

From (40), we can see that \(\sum \limits _{k _1= 1}^{K_1} {{\mathbf{{a}}_{k_1p_1}}{} \mathbf{{a}}_{k_1p_1}^H}\) and \(\mathbf{{e}}_{p_1}^*{\mathbf{{e}}_{p_1}^T}\) are both Toeplitz matrices. In addition, since \({\varvec{P}} = \sum \limits _{p_1= 1}^{N_1} {\varvec{F}}_{p_1}^H{\varvec{A}}_{p_1}^H{\varvec{A}}_{p_1}{\varvec{F}}_{p_1} + \sum \limits _{p_2= 1}^{N_2} {\varvec{F}}_{p_2}^H{\varvec{A}}_{p_2}^H{\varvec{\varGamma }}_{p_2}^H{\varvec{\varGamma }}_{p_2}{\varvec{A}}_{p_2}{\varvec{F}}_{p_2}\), it can be checked that \(\mathbf{{P}}\) is a Toeplitz-block Toeplitz matrix, and any block in \(\mathbf{{P}}\) (i.e., \({\mathbf{{P}}_{ij}}\) ) is a Toeplitz matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Tang, B., Wang, H. et al. Wideband MIMO Radar Transmit Beampattern Synthesis via Majorization–Minimization. Circuits Syst Signal Process 40, 5594–5615 (2021). https://doi.org/10.1007/s00034-021-01735-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01735-4

Keywords

Navigation