Skip to main content
Log in

Modified Model and Algorithm of LMS Adaptive Filter for Noise Cancellation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The present research investigates the innovative concept of LMS adaptive noise cancellation by means of a modified algorithm using an LMS adaptive filter along with their detailed analysis. Three types of equations viz. output, error, and weight update are used in the LMS algorithm. The error equation of traditional LMS algorithm is modified which gives better results as compared to traditional LMS algorithm and their types. The comparison parameters used in the present analysis are signal-to-noise ratio, mean square error, maximum absolute error, and energy ratio between signals of error and output signals. The proposed modified model was found to have a higher signal-to-noise ratio with respect to the traditional model of LMS adaptive noise cancellation. The signal-to-noise ratio of the proposed model has also been compared with some other types of LMS algorithms and was found better in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.M. Abd-Elhameed, E.H. Doha, Y.H. Youssri, New wavelets collocation method for solving second-order multipoint boundary value problems using Chebyshev polynomials of third and fourth kinds. Abstr. Appl. Anal. 2013, 1–9 (2013). https://doi.org/10.1155/2013/542839

    MathSciNet  MATH  Google Scholar 

  2. Y. Chen, Y. Gu, A. O. Hero, Sparse LMS for system identification, in IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3125–3128 (2009). https://doi.org/10.1109/ICASSP.2009.4960286

  3. Y.R. Chien, W.J. Tseng, A new variable step-size method for the M-max LMS algorithms, in IEEE International Conference on Consumer Electronics, Taiwan, pp. 21–22 (2014). https://doi.org/10.1109/ICCE-TW.2014.6904062

  4. R. Dallinger, M. Rupp, On robustness of coupled adaptive filters, in IEEE International Conference on Acoustics, Speech and Signal Processing, Taiwan, pp. 3085–3088 (2009). http://doi.ieeecomputersociety.org/10.1109/ICASSP.2009.4960276

  5. R. Dallinger, M. Rupp, On the robustness of LMS algorithms with time-variant diagonal matrix step-size, in IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, pp. 5691–5695 (2013). https://doi.org/10.1109/ICASSP.2013.6638754

  6. M. Dhal, M. Ghosh, P. Goel, A. Kar, S. Mohapatra, M. Chandra, An unique adaptive noise canceller with advanced variable-step BLMS algorithm, in IEEE International Conference on Advances in Computing, Communications and Informatics, India, pp. 178–183 (2015). https://doi.org/10.1109/ICACCI.2015.7275605

  7. S. Dixit, D. Nagaria, Design and analysis of cascaded LMS adaptive filters for noise cancellation. Circuits Syst. Signal Process. 36(2), 742–766 (2017). https://doi.org/10.1007/s00034-016-0332-5

    Article  Google Scholar 

  8. S. Dixit, D. Nagaria, Hardware reduction in cascaded LMS adaptive filter for noise cancellation using feedback, in Circuits Systems and Signal Processing, pp. 1–16 (2018). https://doi.org/10.1007/s00034-018-0896-3

  9. S. Dixit, D. Nagaria, Neural network implementation of least-mean-square adaptive noise cancellation, in IEEE International Conference on Issues and Challenges in Intelligent Computing Techniques, pp. 134–139 (2014). https://doi.org/10.1109/ICICICT.2014.6781266

  10. S.C. Douglas, Performance comparison of two implementations of the leaky LMS adaptive filter. IEEE Trans. Signal Process. 45(8), 2125–2129 (1997). https://doi.org/10.1109/78.611231

    Article  Google Scholar 

  11. F. Faccenda, L. Novarini, An amplitude constrained FxLMS algorithm for narrow-band active noise control applications, in IEEE 9th International Symposium on Image and Signal Processing and Analysis, Croatia, pp. 233–237 (2015). https://doi.org/10.1109/ISPA.2015.7306064

  12. D.A. Florêncio, H.S. Malvar, Multichannel filtering for optimum noise reduction in microphone arrays, in IEEE International Conference on Acoustics, Speech, and Signal Processing, USA, pp. 197–200 (2001). https://doi.org/10.1109/ICASSP.2001.940801

  13. J.M. Górriz, J. Ramírez, S. Cruces-Alvarez, C.G. Puntonet, E.W. Lang, D. Erdogmus, A novel LMS algorithm applied to adaptive noise cancellation. IEEE Signal Process. Lett. 16(1), 34–37 (2009). https://doi.org/10.1109/LSP.2008.2008584

    Article  Google Scholar 

  14. T. Gowri, P.R. Kumar, D.R.K. Reddy, An efficient variable step size least mean square adaptive algorithm used to enhance the quality of electrocardiogram signal, in S.M. Thampi, A. Gelbukh, J. Mukhopadhyay (eds.) Advances in Signal Processing and Intelligent Recognition Systems, pp. 463–475. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04960-1_41

  15. J.G. Harris, J.K. Juan, J.C. Principe, Analog hardware implementation of continuous-time adaptive filter structures. Analog Integr. Circ. Sig. Process 18(2–3), 209–227 (1999). https://doi.org/10.1023/A:1008363406175

    Article  Google Scholar 

  16. S. Haykin, B. Widrow, Least-mean-square adaptive filters (Wiley, New York, 2003)

  17. S.S. Haykin, Adaptive filter theory (Pearson Education India, Delhi, 2008)

    MATH  Google Scholar 

  18. J.H. Husøy, M.S.E. Abadi, Unified approach to adaptive filters and their performance. IET Signal Proc. 2(2), 97–109 (2008). https://doi.org/10.1049/iet-spr:20070077

    Article  MathSciNet  Google Scholar 

  19. S.M. Jung, J.H. Seo, P. Park, Efficient variable step-size diffusion normalised least-mean-square algorithm. Electron. Lett. 51(5), 395–397 (2015). https://doi.org/10.1049/el.2014.4061

    Article  Google Scholar 

  20. M. Kalamani, S. Valarmathy, M. Krishnamoorthi, Adaptive noise reduction algorithm for speech enhancement. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Ener. Electr. Commun. Eng. 8(6), 1007–1014 (2014)

    Google Scholar 

  21. N. Kalouptsidis, S. Theodoridis, Adaptive system identification and signal processing algorithms (Prentice-Hall, Inc., Upper Saddle River, 1993)

  22. A. Kar, M. Chandra, Pseudo-fractional tap-length learning based applied soft computing for structure adaptation of LMS in high noise environment, in S. Patnaik, B. Zhong (eds.) Soft Computing Techniques in Engineering Applications, pp. 115–129. Springer, New York (2014). https://doi.org/10.1007/978-3-319-04693-8_8

  23. S. Kim, C.D. Yoo, T.Q. Nguyen, Alias-free subband adaptive filtering with critical sampling. IEEE Trans. Signal Process. 56(5), 1894–1904 (2008). https://doi.org/10.1109/TSP.2007.912262

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Krolik, M. Joy, S. Pasupathy, M. Eizenman, A comparative study of the LMS adaptive filter versus generalized correlation method for time delay estimation. IEEE Int. Conf. Acoust. Speech Signal Process. 9, 652–655 (1984). https://doi.org/10.1109/ICASSP.1984.1172302

    Article  Google Scholar 

  25. H.S. Lee, S.E. Kim, J.W. Lee, W.J. Song, A variable step-size diffusion LMS algorithm for distributed estimation. IEEE Trans. Signal Process. 63(7), 1808–1820 (2015). https://doi.org/10.1109/TSP.2015.2401533

    Article  MathSciNet  MATH  Google Scholar 

  26. W.C. Lee, C.C.J. Kuo, Musical onset detection based on adaptive linear prediction, in IEEE International Conference on Multimedia and Expo, pp. 957–960 (2006). https://doi.org/10.1109/ICME.2006.262679

  27. F. Liu, W. Yuan, Y. Ma, Y. Zhou, H. Liu, New enhanced robust kernel least mean square adaptive filtering algorithm, in International Conference on Estimation, Detection and Information Fusion, China, pp. 282–285 (2015). https://doi.org/10.1109/ICEDIF.2015.7280207

  28. P.L. Madhuri, A.A. John, A fast convergence VSS-SDSELMS adaptive channel estimation algorithm for MIMO-OFDM system, in IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 98–103 (2015). https://doi.org/10.1109/ICCICCT.2015.7475257

  29. A.K. Maurya, Cascade-cascade least mean square (LMS) adaptive noise cancellation. Circuits Syst. Signal Process. 37(9), 3785–3826 (2018). https://doi.org/10.1007/s00034-017-0731-2

    Article  Google Scholar 

  30. K. Mayyas, T. Aboulnasr, Leaky LMS algorithm: MSE analysis for Gaussian data. IEEE Trans. Signal Process. 45(4), 927–934 (1997). https://doi.org/10.1109/78.564181

    Article  Google Scholar 

  31. F. Merrikh-Bayat, S. Bagheri-Shouraki, Mixed analog-digital crossbar-based hardware implementation of sign-sign LMS adaptive filter. Analog Integr. Circ. Sig. Process 66(1), 41–48 (2011). https://doi.org/10.1007/s10470-010-9523-3

    Article  Google Scholar 

  32. J. Ni, J. Chen, X. Chen, Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis. Sig. Process. 128, 142–149 (2016). https://doi.org/10.1016/j.sigpro.2016.03.022

    Article  Google Scholar 

  33. B. Paul, P. Mythili, ECG noise removal using GA tuned sign-data least mean square algorithm, in IEEE International Conference on Advanced Communication Control and Computing Technologies, pp. 100–103 (2012). https://doi.org/10.1109/ICACCCT.2012.6320750

  34. P. Prandoni, M. Vetterli, An FIR cascade structure for adaptive linear prediction. IEEE Trans. Signal Process. 46(9), 2566–2571 (1998). https://doi.org/10.1109/78.709548

    Article  Google Scholar 

  35. N.G. Prelcic, F.P. González, M.E.D. Jiménez, Wavelet packet-based subband adaptive equalization. Sig. Process. 81(8), 1641–1662 (2001). https://doi.org/10.1016/S0165-1684(01)00077-9

    Article  MATH  Google Scholar 

  36. H. Quanzhen, G. Zhiyuan, G. Shouwei, S. Yong, Z. Xiaojin, Comparison of LMS and RLS algorithm for active vibration control of smart structures. IEEE Third Int. Conf. Meas. Technol. Mechatron. Autom. 1, 745–748 (2011). https://doi.org/10.1109/ICMTMA.2011.188

    Google Scholar 

  37. L. Rugini, G. Leus, Basis expansion adaptive filters for time-varying system identification, In 2nd IEEE International Workshop in Computational Advances in Multi-Sensor Adaptive Processing, pp. 153–156 (2007)

  38. A.H. Sayed, Adaptive filters (Wiley, New York, 2011)

  39. M. Soflaei, P. Azmi, E. Mostajeran, Using selective partial update-selective regressor affine projection algorithms for adaptive equalization in underwater acoustic communications, in International Conference of Information and Communication Technology, pp. 372–376 (2013). https://doi.org/10.1109/ICoICT.2013.6574604

  40. K.L. Sudha, Performance analysis of new time-varying LMS (NTVLMS) adaptive filtering algorithm in noise cancellation system, in IEEE International Conference on Communication, Information & Computing Technology, India, pp. 1–6 (2015). https://doi.org/10.1109/ICCICT.2015.7045710

  41. B. Widrow, E. Walach, Adaptive signal processing for adaptive control, in IEEE International Conference on Acoustics, Speech, and Signal Processing, USA, pp. 191–194 (1984). https://doi.org/10.1016/S1474-6670(17)62348-6

  42. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson, Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64(8), 1151–1162 (1976). https://doi.org/10.1109/PROC.1976.10286

    Article  MathSciNet  Google Scholar 

  43. B. Widrow, J.R. Glover, J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, J.E. Dong, R.C. Goodlin, Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975). https://doi.org/10.1109/PROC.1975.10036

    Article  Google Scholar 

  44. T. Xu, G. Jacobsen, S. Popov, J. Li, K. Wang, A.T. Friberg, Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system. Opt. Commun. 283(6), 963–967 (2010). https://doi.org/10.1016/j.optcom.2009.11.011

    Article  Google Scholar 

  45. N.R. Yousef, A.H. Sayed, Fixed point steady-state analysis of adaptive filters. Int. J. Adapt. Control Signal Process. 17(3), 237–258 (2003). https://doi.org/10.1002/acs.738

    Article  MATH  Google Scholar 

  46. C.H. Zhao, Y. Du, Blind recognition algorithm of mixed MPSK signals based on constellation diagram. J Eng 2012(4), (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadhesh Kumar Maurya.

Appendix

Appendix

1.1 LMS Algorithms for Adaptive Filters

The output signal y(n) and error signal e(n) for the adaptive filter is given in Eqs. (1) and (2), respectively. The different types of LMS algorithms are known by their weight updated algorithms.

1.1.1 Weight Updated Algorithms

The different types of weight updated algorithms are described as follows:

1.1.1.1 Traditional LMS Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + X\left( n \right)\mu e\left( n \right) $$
(30)

where W(n) = [w0(n) w1(n) … wL−1(n)]T is the weight coefficient vector, X(n) = [x(n) x(n − 1) … x(n − L + 1)]T is the input signal vector, e(n) is the error signal, μ is the step size and L is the filter length of LMS adaptive filter and 0 < µ < 1/λmax.

The λmax is the maximum eigenvalue of correlation matrix Rx. Here,

$$ R_{X} = E\left[ {X\left( n \right)X^{\text{T}} \left( n \right)} \right] $$
(31)
1.1.1.2 Normalized LMS (N-LMS) Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + \beta \frac{X\left( n \right)}{{\varepsilon + \left\|{X\left( n \right)^{2} }\right\|}}\mu e\left( n \right) $$
(32)

where 0 < β < 2, \( {\left\|{X\left( n \right)^{2} }\right\|} = X^{\text{T}} \left( n \right) {X\left( n \right)} \) and \( \mu = \frac{\beta }{{\left\|{X\left( n \right)^{2} }\right\|}} \)

1.1.1.3 Modified Normalized LMS (MN-LMS) Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + \beta \frac{X\left( n \right)}{{\varepsilon + \left\|{X\left( n \right)^{2} }\right\| }}\mu e\left( n \right) $$
(33)

where ε = small positive number.

1.1.1.4 Leaky LMS (L-LMS) Algorithm
$$ W\left( {n + 1} \right) = \left( {1 - \mu \gamma } \right)W\left( n \right) + X\left( n \right)\mu e\left( n \right) $$
(34)

where leaky coefficient γ, 0 < γ ≪ 1 and 0 < µ < (γ + λmax).

1.1.1.5 Block LMS (B-LMS) Algorithm

It is also known as block-updating LMS algorithm. The filter coefficients are updated only once for each block of L-samples. The output signal of a kth block of LMS filter,

$$ y\left( {kL + l} \right) = W^{\text{T}} \left( {kL} \right)X\left( {kL + l} \right) $$
(35a)

The error signal of kth block of LMS filter,

$$ e\left( {kL + l} \right) = d\left( {kL + l} \right) - y\left( {kL + l} \right) $$
(35b)

The weight updated algorithm of kth block of LMS filter,

$$ W\left( {\left( {k + 1} \right)L} \right) = W\left( {kL} \right) + \mu \frac{1}{L}\mathop \sum \limits_{l = 0}^{L - 1} e\left( {kL + l} \right)X\left( {kL + l} \right) $$
(35c)

where l = 0, 1, 2,…, L − 1.

1.1.1.6 Sign-Error LMS (SE-LMS) Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + X\left( n \right)\mu {\text{sgn}} \left[ {e\left( n \right)} \right] $$
(36)

where sgn(.) = signum function

$$ {\text{sgn}}[e(n)] = \left\{ {\begin{array}{*{20}l} {1\quad {\text{for}}\;e\left( n \right) > 0} \hfill \\ { 0\quad {\text{for}}\;e\left( n \right) = 0} \hfill \\ { - 1\quad {\text{for}}\;e\left( n \right) < 0} \hfill \\ \end{array} } \right. $$
1.1.1.7 Sign-Data LMS (SD-LMS) Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + {\text{sgn}} \left[ {X\left( n \right)} \right]\mu e\left( n \right) $$
(37)
1.1.1.8 Sign-Data-Normalized LMS (SDN-LMS) Algorithm
$$ w_{k} \left( {n + 1} \right) = w_{k} \left( n \right) + \frac{\mu }{{\left| {x\left( {n - k} \right)} \right|}}e\left( n \right)x\left( {n - k} \right) $$
(38)
1.1.1.9 Sign-Sign LMS (SS-LMS) Algorithm
$$ W\left( {n + 1} \right) = W\left( n \right) + {\text{sgn}} \left[ {X\left( n \right)} \right]\mu {\text{sgn}} \left[ {e\left( n \right)} \right] $$
(39)
1.1.1.10 Sign-Sign LMS Algorithm with Leakage Term (SS-LMS-LT)
$$ W\left( {n + 1} \right) = \left( {1 - \mu \gamma } \right)W\left( n \right) + {\text{sgn}} \left[ {X\left( n \right)\left] {\mu {\text{sgn}} } \right[e\left( n \right)} \right] $$
(40)
1.1.1.11 Variable Step-Size LMS (VS-LMS) Algorithm
$$ w_{k} \left( {n + 1} \right) = w_{k} \left( n \right) + \mu_{k} e\left( n \right)x\left( {n - k} \right) $$
(41)

where µmin < µ < µmax and step size adjusted for each coefficient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Agrawal, P. & Dixit, S. Modified Model and Algorithm of LMS Adaptive Filter for Noise Cancellation. Circuits Syst Signal Process 38, 2351–2368 (2019). https://doi.org/10.1007/s00034-018-0952-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0952-z

Keywords

Navigation