Skip to main content
Log in

CDTA-Based Capacitance Multipliers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Two grounded capacitance multipliers employing the current differencing transconductance amplifier (CDTA) are proposed. They can be easily modified to the floating versions by using an additional difference voltage amplifier. Each multiplier contains one CDTA, one capacitor, pseudo-grounded via a low-impedance CDTA input terminal, and one or two resistors. A careful error analysis is made and both circuits are compared in terms of their benefits and drawbacks. The results of the measurements on the specimens exploiting on-chip CDTAs correspond to the design objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.T. Abuelma’atti, N.A. Tasadduq, Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor. Microelectron. J. 30, 869–873 (1999)

    Article  Google Scholar 

  2. C.K. Alexander, M.N.O. Sadiku, Fundamentals of Electric Circuits, 5th edn. (McGraw Hill, New York, 2013), pp. 437–439

    Google Scholar 

  3. H. Alpaslan, DVCC-based floating capacitance multiplier design. Turk. J. Electr. Eng. Comput. Sci. 25, 1334–1345 (2017)

    Article  Google Scholar 

  4. D. Biolek, CDTA—building block for current-mode analog signal processing, in Proceedings of the European Conference on Circuit Theory and Design (ECCTD’03) (Cracow, Poland, 2003), pp. 397–400

  5. D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEU Int. J. Electron. Commun. 62, 92–96 (2008)

    Article  Google Scholar 

  6. D. Biolek, A.Ü. Keskin, V. Biolkova, Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circ. Devices Syst. 4, 496–502 (2010)

    Article  Google Scholar 

  7. P. Brinzoi, A. Cracan, N. Cojan, A new approach in designing electrically controlled capacitance multipliers, in Proceedings of the 10th International Symposium on Signals, Circuits and Systems (ISSCS 2011) (Iasi, Romania, 2011), pp. 1–4

  8. J. Choi, J. Park, W. Kim, K. Lim, J. Laskar, High multiplication factor capacitor multiplier for an on-chip PLL loop filter. Electron. Lett. 45, 239–240 (2009)

    Article  Google Scholar 

  9. H.Y. Darweesh, F.A. Farag, Y.A. Khalaf, New active capacitance multiplier for low cutoff frequency filter design, in Proceedings of the 19th International Conference on Microelectronics (ICM 2007) (Cairo, Egypt, 2007), pp. 381–384

  10. W.G. Davis, Capacitance multiplier circuit. United States Patent 3, 911, 296 (1975)

  11. A. De Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectron. J. 40, 20–25 (2009)

    Article  Google Scholar 

  12. A.A. El-Adawy, A.M. Soliman, H.O. Elwan, A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans. Circuits Syst. II Express Briefs 47, 306–313 (2000)

    Article  Google Scholar 

  13. G. Ferri, S. Pennisi, A 1.5-V current-mode capacitance multiplier, in Proceedings of the 10th International Conference on Microelectronics (ICM’98) (Monastir, Tunisia, 1998), pp. 9–12

  14. I. Hwang, Area-efficient and self-biased capacitor multiplier for on-chip loop filter. Electron. Lett. 42, 1392–1393 (2006)

    Article  Google Scholar 

  15. W. Jaikla, M. Siripruchyanun, An electronically controllable capacitance multiplier with temperature compensation, in Proceedings of International Symposium on Communications and Information Technologies (ISCIT’06) (Bangkok, Thailand, 2006), pp. 356–359

  16. A. Jantakun, N. Pisutthipong, M. Siripruchyanun, Single element based novel temperature insensitive/electronically controllable floating capacitance multiplier and its application, in Proceedings of the International Conference on Electrical Engineering, Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2010) (Chiang Mai, Thailand, 2010), pp. 37–41

  17. A.Ü. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc Circuits Devices Syst. 153, 214–218 (2006)

    Article  Google Scholar 

  18. A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Current conveyor based R- and C-multiplier circuits. AEU Int. J. Electron. Commun. 56, 312–316 (2002)

    Article  Google Scholar 

  19. Z. Kolka, V. Biolkova, D. Biolek, New version of SNAP simulator, in Proceedings of the International Conference Communication and Information Technologies (KIT 2017) (T. Zruby, Slovakia, 2017), pp. 1–4

  20. T. Kulej, Regulated capacitance multiplier in CMOS technology, in Proceedings of 16th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES’09) (Lodz, Poland, 2009), pp. 316–319

  21. A. Lahiri, DO-CCII based generalized impedance convertor simulates floating inductance, capacitance multiplier and FDNR. Aust. J. Electr. Electron. Eng. 7, 15–19 (2010)

    Article  Google Scholar 

  22. Y. Li, A.K.Y. Wong, Y.T. Zhang, Fully-integrated transimpedance amplifier for photoplethysmographic signal processing with two-stage Miller capacitance multiplier. Electron. Lett. 46, 745–746 (2010)

    Article  Google Scholar 

  23. I. Myderrizi, A. Zeki, Electronically tunable DXCCII-based grounded capacitance multiplier. AEU Int. J. Electron. Commun. 68, 899–906 (2014)

    Article  Google Scholar 

  24. S. Pennisi, CMOS multiplier for grounded capacitors. Electron. Lett. 38, 765–766 (2002)

    Article  Google Scholar 

  25. S. Pennisi, High accuracy CMOS capacitance multiplier, in Proceedings of the 9th International Conference on Electronics, Circuits and Systems (ECS2002) (Dubrovnik, Croatia, 2002), pp. 389–392

  26. P. Prommee, M. Somdunyakanok, CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU Int. J. Electron. Commun. 65, 1–8 (2011)

    Article  Google Scholar 

  27. G.A. Rincon-Mora, Active capacitor multiplier in Miller-compensated circuits. IEEE J. Solid State Circuits 35, 26–32 (2000)

    Article  Google Scholar 

  28. N.A. Shah, S.Z. Iqbal, M. Quadri, Current-mode first-order all-pass filter using CDTA. Electron. World Wirel. World 111, 48 (2005)

    Google Scholar 

  29. K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez, S.H.K. Embabi, A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier. IEEE J. Solid State Circuits 38, 866–873 (2003)

    Article  Google Scholar 

  30. P. Silapan, C. Tanaphatsiri, M. Siripruchyanun, Current controlled CCTA based-novel grounded capacitance multiplier with temperature compensation, in Proceedings of the Asia Pacific Conference on Circuits and Systems (APCCAS 2008) (Macao, China, 2008), pp. 1490–1493

  31. M. Siripryuchyanun, W. Jaikla, Floating capacitance multiplier using DVCC and CCCII, in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT’07) (Sydney, Australia, 2007), pp. 218–221

  32. Y. Tang, M. Ismail, S. Bibyk, Adaptive Miller capacitor multiplier for compact on-chip PLL filter. Electron. Lett. 39, 43–45 (2003)

    Article  Google Scholar 

  33. W. Tangsrirat, W. Tanjaroen, Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Syst. Signal Process. 27, 81–93 (2008)

    Article  Google Scholar 

  34. W. Tangsrirat, T. Dumawipata, W. Surakampontorn, Multiple-input single output current-mode multifunction filter using current differencing transconductance amplifiers. AEU Int. J. Electron. Commun. 61, 209–214 (2007)

    Article  Google Scholar 

  35. W. Tangsrirat, T. Pukkalanun, P. Mongkolwai, W. Surakampontorn, Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. AEU Int. J. Electron. Commun. 65, 198–203 (2011)

    Article  Google Scholar 

  36. J. Vavra, A capacitance multiplier based on DBTA, in Proceedings of the 2017 IEEE Nordic Circuits and Systems Conference (NORCAS 2917) (Linkoping, Sweden, 2017), pp. 1–5

  37. J. Vavra, A grounded capacitance multiplier based on CCII. J. Telecommun. Electron. Comput. Eng. (2018) (in press)

  38. E. Yuce, S. Minaei, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. Regul. Pap. 55, 266–275 (2008)

    Article  MathSciNet  Google Scholar 

  39. E. Zadeh, CM circuits and the applications thereof to attenuate row-wise temporal noise in image sensors. United States Patent, 2,008,024,653,9 A1 (2008)

Download references

Acknowledgements

For research, the infrastructure of K217 UD Brno was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolek, D., Vavra, J. & Keskin, A.Ü. CDTA-Based Capacitance Multipliers. Circuits Syst Signal Process 38, 1466–1481 (2019). https://doi.org/10.1007/s00034-018-0929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0929-y

Keywords

Navigation