Skip to main content
Log in

The Quaternion Fourier Number Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce the quaternion Fourier number transform (QFNT), which corresponds to a quaternionic version of the well-known number-theoretic transform. We derive several theoretical results necessary to define the QFNT and investigate its main properties. Differently from other quaternion transforms, which are defined over Hamilton’s quaternions, the QFNT requires considering a quaternion algebra over a finite field. Thus, its computation involves integer arithmetic only, avoiding truncation and rounding-off errors. We give an illustrative example regarding the application of the QFNT to digital color image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.S. Alexiadis, G.D. Sergiadis, Estimation of motions in color image sequences using hypercomplex Fourier transforms. IEEE Trans. Image Process. 18(1), 168–187 (2009)

    Article  MathSciNet  Google Scholar 

  2. D. Assefa, L. Mansinha, K.F. Tiampo, H. Rasmussen, K. Abdella, Local quaternion Fourier transform and color image texture analysis. Signal Process. 90(6), 1825–1835 (2010)

    Article  Google Scholar 

  3. B. Augereau, P. Carré, Hypercomplex polynomial wavelet-filter bank transform for color image. Signal Process. 136(7), 16–28 (2017)

    Article  Google Scholar 

  4. R.E. Blahut, Fast Algorithms for Signal Processing (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  5. D.M. Burton, Elementary Number Theory, 7th edn. (McGrae-Hill Education, New York, 2010)

    Google Scholar 

  6. R.J. Cintra, V.S. Dimitrov, H.M. de Oliveira, R.M. Campello de Souza, Fragile watermarking using finite field trigonometrical transforms. Signal Process. Image Commun. 24(7), 587–597 (2009)

    Article  Google Scholar 

  7. R.M.C. de Souza, H.M. de Oliveira, A.N. Kauffman, A.J.A. Paschoal, in Information Theory, 1998. Proceedings. 1998 IEEE International Symposium. Trigonometry in finite fields and a new hartley transform (IEEE, 1998), p. 293

  8. A. del Rey, J.L. Hernández Pastora, G. Rodríguez Sánchez, 3D medical data security protection. Expert Syst. Appl. 54, 379–386 (2016)

    Article  Google Scholar 

  9. T.A. Ell, S.J. Sangwine, Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  10. T.A. Ell, N. Le Bihan, S.J. Sangwine, Quaternion Fourier Transforms for Signal and Image Processing (Wiley, New York, 2014)

    Book  Google Scholar 

  11. F. Fekri, S.W. McLaughlin, R.M. Mersereau, R.W. Schafer, Block error correcting codes using finite-field wavelet transforms. IEEE Trans. Signal Process. 54(3), 991–1004 (2006)

    Article  Google Scholar 

  12. P. Fletcher, S.J. Sangwine, The development of the quaternion wavelet transform. Signal Process. 136(7), 2–15 (2017)

    Article  Google Scholar 

  13. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 4th edn. (Pearson, London, 2017)

    Google Scholar 

  14. A.M. Grigoryan, J. Jenkinson, S.S. Agaian, Quaternion fourier transform based alpha-rooting method for color image measurement and enhancement. Signal Process. 109, 269–289 (2015)

    Article  Google Scholar 

  15. M. Jiang, W. Liu, Y. Li, Z. Zhang, in TENCON 2013-2013 IEEE Region 10 Conference (31194). Frequency-domain quaternion-valued adaptive filtering and its application to wind profile prediction (IEEE, 2013), pp. 1–5

  16. A. Jolfaei, X.W. Wu, V. Muthukkumarasamy, A 3D object encryption scheme which maintains dimensional and spatial stability. IEEE Trans. Inf. Forensics Secur. 10(2), 409–422 (2015)

    Article  Google Scholar 

  17. S. Kak, The number theoretic Hilbert transform. Circuits Syst. Signal Process. 33(8), 2539–2548 (2014)

    Article  MathSciNet  Google Scholar 

  18. M. Kobayashi, Fixed points of split quaternionic hopfield neural networks. Signal Process. 136(7), 38–42 (2017)

    Article  Google Scholar 

  19. T.Y. Lam, Introduction to Quadratic Forms Over Fields. Graduate Studies in Mathematics, vol. 67 (American Mathematical Society, New York, 2004)

    Google Scholar 

  20. R. Lan, Y. Zhou, Quaternion-Michelson descriptor for color image classification. IEEE Trans. Image Process. 25(11), 5281–5292 (2016)

    Article  MathSciNet  Google Scholar 

  21. Y.N. Li, Quaternion polar harmonic transforms for color images. IEEE Signal Process. Lett. 20(8), 803–806 (2013)

    Article  Google Scholar 

  22. J.B. Lima, R.M. Campello de Souza, Closed-form Hermite–Gaussian-like number-theoretic transform eigenvectors. Signal Process. 128, 409–416 (2016)

    Article  Google Scholar 

  23. J.B. Lima, L.F.G. Novaes, Image encryption based on the fractional fourier transform over finite fields. Signal Process. 94, 521–530 (2014)

    Article  Google Scholar 

  24. J.B. Lima, R.M.C. Souza, Finite field trigonometric transforms. Appl. Algebra Eng. Commun. Comput. 22(5–6), 393–411 (2011)

    Article  MathSciNet  Google Scholar 

  25. J.B. Lima, F. Madeiro, F.J.R. Sales, Encryption of medical images based on the cosine number transform. Signal Process. Image Commun. 35, 1–8 (2015)

    Article  Google Scholar 

  26. P.H.E.S. Lima, J.B. Lima, R.M. Campello de Souza, Fractional Fourier, Hartley, cosine and sine number-theoretic transforms based on matrix functions. Circuits Syst. Signal Process. 36(7), 2893–2916 (2016)

    Article  Google Scholar 

  27. M. Mikhail, Y. Abouelseoud, G. ElKobrosy, Two-phase image encryption scheme based on FFCT and fractals. Security and Communication Networks 2017, 1–13 (2017)

    Article  Google Scholar 

  28. T. Minemoto, T. Isokawa, H. Nishimura, N. Matsui, Feed forward neural network with random quaternionic neurons. Signal Process. 136(7), 59–68 (2017)

    Article  Google Scholar 

  29. T. Ogunfunmi, Adaptive filtering using complex data and quaternions. Proc. Comput. Sci. 61, 334–340 (2015)

    Article  Google Scholar 

  30. F. Ortolani, D. Comminiello, M. Scarpiniti, A. Uncini, Frequency domain quaternion adaptive filters: algorithms and convergence performance. Signal Process. 136(7), 69–80 (2017)

    Article  Google Scholar 

  31. A. Pedrouzo-Ulloa, J.R. Troncoso-Pastoriza, F. Pérez-González, Number theoretic transforms for secure signal processing. IEEE Trans. Inf. Forensics Secur. 12(5), 1125–1140 (2017)

    Article  Google Scholar 

  32. S.C. Pei, Y.Z. Hsiao, Circuits and Systems (ISCAS), 2013 IEEE International Symposium. Demosaicking of color filter array patterns using quaternion Fourier transform and low pass filter. (IEEE, 2013), pp. 2800–2803

  33. S.C. Pei, C.C. Wen, J.J. Ding, Closed form orthogonal number theoretic transform eigenvectors and the fast fractional NTT. IEEE Trans. Signal Process. 59(5), 2124–2135 (2011)

    Article  MathSciNet  Google Scholar 

  34. R.S. Pierce, Associative Algebras. Graduate Texts in Mathematics, vol. 88 (Springer, New York, 1982)

    Book  Google Scholar 

  35. J.M. Pollard, The fast Fourier transform in a finite field. Math. Comput. 25(114), 365–374 (1971)

    Article  MathSciNet  Google Scholar 

  36. I.S. Reed, T.K. Truong, The use of finite fields to compute convolutions. IEEE Trans. Inf. Theory 21(2), 208–213 (1975)

    Article  MathSciNet  Google Scholar 

  37. S. Roman, Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135, 3rd edn. (Springer, New York, 2007)

    Google Scholar 

  38. R. Roopkumar, Quaternionic one-dimensional fractional Fourier transform. Opt. Int. J. Light Electron Opt. 127(24), 11657–11661 (2016)

    Article  Google Scholar 

  39. W. Shu, Y. Tianren, Algorithm for linear convolution using number theoretic transforms. Electron. Lett. 24(5), 249–250 (1988)

    Article  Google Scholar 

  40. H. Tamori, T. Yamamoto, Asymmetric fragile watermarking scheme using a number-theoretic transform. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92.A(3), 836–838 (2009)

    Article  Google Scholar 

  41. T. Toivonen, J. Heikkila, Video filtering with Fermat number theoretic transforms using residue number system. IEEE Trans. Circuits Syst. Video Technol. 16(1), 92–101 (2006)

    Article  Google Scholar 

  42. D. Wei, Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Process. 10(9), 1052–1061 (2016)

    Article  Google Scholar 

  43. D. Wei, Y. Li, Different forms of Plancherel theorem for fractional quaternion Fourier transform. Opt. Int. J. Light Electron Opt. 124(24), 6999–7002 (2013)

    Article  Google Scholar 

  44. D. Wei, Y.M. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  Google Scholar 

  45. Y. Xu, L. Yu, H. Xu, H. Zhang, T. Nguyen, Vector sparse representation of color image using quaternion matrix analysis. IEEE Trans. Image Process. 24(4), 1315–1329 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Juliano B. Lima is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—under Grants 307686/2014-0 and 456744/2014-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano B. Lima.

Appendix

Appendix

If \(p\equiv 1\,(\mathrm {mod}\,\,4)\), one has \(i=\sqrt{-1}\in {\mathbb {F}}_p\) [5]. The multiplicative order of \(\mathbf {Q}\) can be determined according to the following cases.

  • Case 1: \(b^2+c^2+d^2=0\). In this case, one has \(\lambda _1=\lambda _2=a\in {\mathbb {F}}_p\). The following subcases have to be considered.

    • Subcase 1.1: \(b=c=d=0\). The condition determining the current subcase is identical to that considered in subcase 1.1 for \(p\equiv 3\,(\mathrm {mod}\,\,4)\) and, therefore, leads to the same result.

    • Subcase 1.2: \(b= 0\) and \(c\ne 0\) and \(d\ne 0\). In this case, one has \(c^2=-d^2\Rightarrow c=\pm di\). Assuming that \(c=di\), \(\mathbf {Q}\) reduces to a matrix in the form

      $$\begin{aligned} \mathbf {Q}=\left[ \begin{array}{cc} a&{}\quad 2di\\ 0&{}\quad a \end{array}\right] . \end{aligned}$$
      (35)

      Denoting by \(\mathbf {v} = [v(0)\,\, v(1)]\) an eigenvector of \(\mathbf {Q}\), one may write \(\mathbf {Q}\mathbf {v}^T=a\mathbf {v}^T\), which produces the system of equations

      $$\begin{aligned} \left\{ \begin{array}{ll} a v(0) + 2div(1)=av(0)\\ av(1)=av(1). \end{array}\right. \end{aligned}$$
      (36)

      The solution for (36) is simply \(v(1)=0\), which indicates that the geometric multiplicity of \(\lambda _1=\lambda _2=a\) is \(m_g(a)=1\). Therefore, \(\mathbf {Q}\) is not diagonalizable and admits the Jordan normal form

      $$\begin{aligned} \mathbf {J_Q}=\left[ \begin{array}{cc} a&{}\quad 1\\ 0&{}\quad a \end{array}\right] . \end{aligned}$$
      (37)

      Analogously to subcase 1.2 for \(p\equiv 3\,(\mathrm {mod}\,\,4)\), one concludes that \(\mathrm {ord}(\mathbf {Q})=\mathrm {ord}(\mathbf {J_Q})=\mathrm {lcm}(\mathrm {ord}(a),p)\). One obtains the same result if \(c=-di\) or \(c=0\) and \(b\ne 0\) and \(d\ne 0\) or \(d=0\) and \(b\ne 0\) and \(c\ne 0\).

    • Subcase 1.3: \(b\ne 0\) and \(c\ne 0\) and \(d\ne 0\). In this case, one may write \(b^2=-(c^2+d^2)\Rightarrow b=\pm i\sqrt{c^2+d^2}\). Assuming that \(b=i\sqrt{c^2+d^2}\), \(\mathbf {Q}\) reduces to a matrix in the form

      $$\begin{aligned} \mathbf {Q}=\left[ \begin{array}{cc} a-\sqrt{c^2+d^2}&{}c+di\\ -c+di&{}a+\sqrt{c^2+d^2} \end{array}\right] . \end{aligned}$$
      (38)

      Denoting by \(\mathbf {v} = [v(0)\,\, v(1)]\) an eigenvector of \(\mathbf {Q}\), one may write \(\mathbf {Q}\mathbf {v}^T=a\mathbf {v}^T\), which produces the system of equations

      $$\begin{aligned} \left\{ \begin{array}{ll} -\sqrt{c^2+d^2} v(0) + (c+di)v(1)=0\\ (-c+di)v(0)+\sqrt{c^2+d^2}v(1)=0 \end{array}\right. . \end{aligned}$$
      (39)

      From (39), one obtains the relationship

      $$\begin{aligned} v(0=-\frac{\sqrt{c^2+d^2}}{-c+di}v(1), \end{aligned}$$

      which indicates that the geometric multiplicity of \(\lambda _1=\lambda _2=a\) is \(m_g(a)=1\). Therefore, \(\mathbf {Q}\) is not diagonalizable and admits the Jordan normal form (37). Analogously to subcase 1.2 for \(p\equiv 3\,(\mathrm {mod}\,\,4)\), one concludes that \(\mathrm {ord}(\mathbf {Q})=\mathrm {ord}(\mathbf {J_Q})=\mathrm {lcm}(\mathrm {ord}(a),p)\). One obtains the same result if \(b=-i\sqrt{c^2+d^2}\). A similar development can be carried out if we use \(c=\pm i\sqrt{b^2+d^2}\) or \(d=\pm i\sqrt{b^2+c^2}\).

  • Case 2: \(b^2+c^2+d^2\ne 0\). In this case, \(\mathbf {Q}\) has two distinct eigenvalues and admits the diagonal form

    $$\begin{aligned} \mathbf {\Lambda _Q}=\left[ \begin{array}{cc} \lambda _1&{}0\\ 0&{}\lambda _2 \end{array}\right] . \end{aligned}$$
    (40)

    Thus, \(\mathrm {ord}(\mathbf {Q})=\mathrm {ord}(\mathbf {\Lambda _Q})=\mathrm {lcm}(\lambda _1,\lambda _2)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.C., Lima, J.B. The Quaternion Fourier Number Transform. Circuits Syst Signal Process 37, 5486–5506 (2018). https://doi.org/10.1007/s00034-018-0824-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0824-6

Keywords

Navigation