Skip to main content
Log in

Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that has been contaminated by impulsive noise is detected and filtered. In the next stage, filtering is based on sparse representation and 3D-processing using discrete cosine transform. Finally, the post-processing stage increases the filtering quality by using a bilateral filter and an edge restoration technique. Evaluation is performed using objective criteria (PSNR and SSIM) and subjective human visual perception to confirm the methods performance compared with state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Bahoura, H. Ezzaidi, FPGA-implementation of discrete wavelet transform with application to signal denoising. Circuits Syst. Signal Process. 31(3), 987–1015 (2012). https://doi.org/10.1007/s00034-011-9355-0

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 2 (IEEE, 2005), pp. 60–65. https://doi.org/10.1109/CVPR.2005.38

  3. J.G. Camarena, V. Gregori, S. Morillas, A. Sapena, A simple fuzzy method to remove mixed Gaussian-impulsive noise from color images. IEEE Trans. Fuzzy Syst. 21(5), 971–978 (2013). https://doi.org/10.1109/TFUZZ.2012.2234754

    Article  Google Scholar 

  4. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  5. K. Deshmukh, G. Shinde, An adaptive color image segmentation. Electron. Lett. Comput. Vis. Image Anal. 5(4), 12–23 (2005). https://doi.org/10.5565/REV/ELCVIA.115. 15775097

    Article  Google Scholar 

  6. W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013). https://doi.org/10.1109/TIP.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  7. S.L. Eddins, R.C. Gonzalez, R.E. Woods, Digital Image Processing Using Matlab, 2nd edn. (Gatesmark Publishing, Knoxville, 2009)

    Google Scholar 

  8. D.V. Fevralev, N.N. Ponomarenko, V.V. Lukin, S.K. Abramov, K.O. Egiazarian, J.T. Astola, Efficiency analysis of color image filtering. EURASIP J. Adv. Signal Process. 1, 41 (2011). https://doi.org/10.1186/1687-6180-2011-41

    Article  Google Scholar 

  9. R. Garnett, T. Huegerich, C. Chui, W. He, A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005). https://doi.org/10.1109/TIP.2005.857261

    Article  Google Scholar 

  10. P. Jain, V. Tyagi, LAPB: locally adaptive patch-based wavelet domain edge-preserving image denoising. Inf. Sci. 294, 164–181 (2015). https://doi.org/10.1016/j.ins.2014.09.060

    Article  MathSciNet  MATH  Google Scholar 

  11. F.T. Jhohura, T. Howlader, S.M.M. Rahman, Bayesian fusion of ensemble of multifocused noisy images. Circuits Syst. Signal Process. 34(7), 2287–2308 (2015). https://doi.org/10.1007/s00034-014-9956-5

    Article  MATH  Google Scholar 

  12. J. Jiang, L. Zhang, J. Yang, Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23(6), 2651–2662 (2014). https://doi.org/10.1109/TIP.2014.2317985

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Jin, J. Jost, G. Wang, A new nonlocal H 1 model for image denoising. J. Math. Imaging Vis. 48(1), 93–105 (2014). https://doi.org/10.1007/s10851-012-0395-2

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Jovanov, A. Pizurica, S. Schulte, P. Schelkens, A. Munteanu, E. Kerre, W. Philips, Combined wavelet-domain and motion-compensated video denoising based on video codec motion estimation methods. IEEE Trans. Circuits Syst. Video Technol. 19(3), 417–421 (2009). https://doi.org/10.1109/TCSVT.2009.2013491

    Article  Google Scholar 

  15. C. Kervrann, J. Boulanger, Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006). https://doi.org/10.1109/TIP.2006.877529

    Article  Google Scholar 

  16. V.F. Kravchenko, V.I. Ponomaryov, V.I. Pustovot, Three-dimensional filtration of multichannel video sequences on the basis of fuzzy-set theory. Dokl. Phys. 55(2), 58–63 (2010). https://doi.org/10.1134/S1028335810020047

    Article  Google Scholar 

  17. Y. Kuang, L. Zhang, Z. Yi, Image denoising via sparse dictionaries constructed by subspace learning. Circuits Syst. Signal Process. 33(7), 2151–2171 (2014). https://doi.org/10.1007/s00034-013-9734-9

    Article  Google Scholar 

  18. F. Luisier, T. Blu, M. Unser, A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593–606 (2007). https://doi.org/10.1109/TIP.2007.891064

    Article  MathSciNet  Google Scholar 

  19. V. Lukin, D. Fevralev, O. Pogrebnyak, Nonstationary noise locally adaptive filtering in DCT domain. Congress (WAC) 2012, 1–6 (2012)

    Google Scholar 

  20. H. Luo, H. Chu, Y. Xu, Clustering-based image sparse denoising in wireless multimedia sensor networks. Circuits Syst. Signal Process. 34(3), 1027–1040 (2015). https://doi.org/10.1007/s00034-014-9882-6

    Article  Google Scholar 

  21. M. Maggioni, G. Boracchi, A. Foi, K. Egiazarian, Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012). https://doi.org/10.1109/TIP.2012.2199324

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, in 2009 IEEE 12th International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279. https://doi.org/10.1109/ICCV.2009.5459452

  23. J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008). https://doi.org/10.1109/TIP.2007.911828

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Melange, M. Nachtegael, E.E. Kerre, V. Zlokolica, S. Schulte, V. De Witte, A. Pizurica, W. Philips, Video denoising by fuzzy motion and detail adaptive averaging. J. Electron. Imaging 17(4), 043,005 (2008). https://doi.org/10.1117/1.2992065

    Article  Google Scholar 

  25. T. Mélange, M. Nachtegael, S. Schulte, E.E. Kerre, A fuzzy filter for the removal of random impulse noise in image sequences. Image Vis. Comput. 29(6), 407–419 (2011). https://doi.org/10.1016/j.imavis.2011.01.005

    Article  MATH  Google Scholar 

  26. S. Morillas, V. Gregori, A. Hervas, Fuzzy peer groups for reducing mixed Gaussian-impulse noise from color images. IEEE Trans. Image Process. 18(7), 1452–1466 (2009). https://doi.org/10.1109/TIP.2009.2019305

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Mukhopadhyay, J.K. Mandal, A fuzzy switching median filter of impulses in digital imagery (fsmf). Circuits Syst. Signal Process. 33(7), 2193–2216 (2014). https://doi.org/10.1007/s00034-014-9739-z

    Article  Google Scholar 

  28. M. Nasri, S. Saryazdi, H. Nezamabadi-pour, A fast adaptive salt and pepper noise reduction method in images. Circuits Syst. Signal Process. 32(4), 1839–1857 (2013). https://doi.org/10.1007/s00034-012-9546-3

    Article  Google Scholar 

  29. A. Palacios-Enriquez, V. Ponomaryov, Image denoising using block matching and discrete cosine transform with edge restoring, in IEEE Conference Proceedings Conielecomp 978-1-5090, (2016), pp. 140–147

  30. I. Pitas, Digital Image Processing Algorithms and Applications (Wiley, Hoboken, 2000)

    MATH  Google Scholar 

  31. O. Pogrebnyak, V.V. Lukin, Wiener discrete cosine transform-based image filtering. J. Electron. Imaging 21(4), 043,020 (2012). https://doi.org/10.1117/1.JEI.21.4.043020

    Article  Google Scholar 

  32. V. Ponomaryov, F. Gallegos-Funes, A. Rosales-Silva, Real-time color image processing using order statistics filters. J. Math. Imaging Vis. 23(3), 315–319 (2005). https://doi.org/10.1007/s10851-005-2025-8

    Article  MathSciNet  Google Scholar 

  33. J. Portilla, V. Strela, M. Wainwright, E. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003). https://doi.org/10.1109/TIP.2003.818640

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Rosales-Silva, F. Gallegos-Funes, V.I. Ponomaryov, Fuzzy directional (FD) filter for impulsive noise reduction in colour video sequences. J. Vis. Commun. Image Represent. 23(1), 143–149 (2012). https://doi.org/10.1016/j.jvcir.2011.09.007

    Article  Google Scholar 

  35. A. Rosales-Silva, F. Gallegos-Funes, I. Trujillo, A. García, Robust fuzzy scheme for Gaussian denoising of 3D color video. EURASIP J. Image Video Process. 1, 20 (2014). https://doi.org/10.1186/1687-5281-2014-20

    Article  Google Scholar 

  36. B.K. Shreyamsha Kumar, Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7(6), 1211–1227 (2013). https://doi.org/10.1007/s11760-012-0389-y

    Article  Google Scholar 

  37. N. Suetake, G. Tanaka, J. Matsuoka, E. Uchino, Noise reduction based on iterative hybrid vector filter and detail correction employing correlation among RGB components. J. Frankl. Inst. 349(7), 2357–2368 (2012). https://doi.org/10.1016/j.jfranklin.2012.05.002

    Article  MathSciNet  MATH  Google Scholar 

  38. I.R. Terol-Villalobos, J.D. Mendiola-Santibañez, Filtering of mixed Gaussian and impulsive noise using morphological contrast detectors. IET Image Process. 8(3), 131–141 (2014). https://doi.org/10.1049/iet-ipr.2012.0615

    Article  Google Scholar 

  39. USC, The USC-SIPI image database. (2016). http://sipi.usc.edu/database/

  40. T. Veerakumar, R. Jagannath, B. Subudhi, S. Esakkirajan, Impulse noise removal using adaptive radial basis function interpolation. Circuits Syst. Signal Process. (2016). https://doi.org/10.1007/s00034-016-0352-1

    Article  Google Scholar 

  41. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  42. H. Winnemöller, S.C. Olsen, B. Gooch, Real-time video abstraction, in ACM SIGGRAPH 2006 Papers on—SIGGRAPH ’06, vol. 25 (ACM Press, New York, 2006), p. 1221. https://doi.org/10.1145/1179352.1142018

  43. G. Xu, J. Tan, A universal impulse noise filter with an impulse detector and nonlocal means. Circuits Syst. Signal Process. 33(2), 421–435 (2014). https://doi.org/10.1007/s00034-013-9640-1

    Article  MathSciNet  Google Scholar 

  44. I. Young, J. Gerbrands, L. Vliet, Fundamentals of Image Processing. TU Delft, Faculty of Applied Physics, Pattern Recognition Group (1995)

  45. Y. Zhang, X. Tian, P. Ren, An adaptive bilateral filter based framework for image denoising. Neurocomputing 140, 299–316 (2014). https://doi.org/10.1016/j.neucom.2014.03.008

    Article  Google Scholar 

  46. Y. Zhou, Z. Ye, Y. Xiao, A restoration algorithm for images contaminated by mixed Gaussian plus random-valued impulse noise. J. Vis. Commun. Image Represent. 24(3), 283–294 (2013). https://doi.org/10.1016/j.jvcir.2013.01.004

    Article  Google Scholar 

  47. V. Zlokolica, A. Pizurica, W. Philips, Wavelet-domain video denoising based on reliability measures. IEEE Trans. Circuits Syst. Video Technol. 16(8), 993–1007 (2006). https://doi.org/10.1109/TCSVT.2006.879994

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Instituto Politécnico Nacional (México) and Consejo Nacional de Ciencia y Tecnología (México) (Grant 220347) for their support in realizing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palacios-Enriquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Enriquez, A., Ponomaryov, V., Reyes-Reyes, R. et al. Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise. Circuits Syst Signal Process 37, 5389–5416 (2018). https://doi.org/10.1007/s00034-018-0820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0820-x

Keywords

Navigation