Skip to main content
Log in

Modified Robust Capon Beamforming with Approximate Orthogonal Projection onto the Signal-Plus-Interference Subspace

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new robust adaptive beamforming technique based on a modification of the robust Capon beamforming approach is introduced. It is shown that this technique leads to an approximate eigenspace projection-based array steering vector estimation. The steering vector is estimated as an approximation for the orthogonal projection of the presumed steering vector of the desired signal onto the signal-plus-interference subspace. Also, it is demonstrated that the optimal diagonal loading factor corresponds to the minimum of the estimated beamformer output power. Furthermore, the formulation of the proposed method provides the possibility of estimating the direction-of-arrival of the desired signal. This estimation is then used to update the presumed steering vector. An important virtue of the proposed method is its better or comparable performance with less computational complexity than the recent existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Chen, F. Shen, J. Song, Robust adaptive beamforming using low-complexity correlation coefficient calculation algorithms. IET Electron. Lett. 51(6), 443–445 (2015)

    Article  Google Scholar 

  2. L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans. 46(1), 449–458 (2010)

    Google Scholar 

  3. A. Elnashar, S.M. Elnoubi, H.A. ElMikati, Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans. 54(12), 3647–3658 (2006)

    Article  Google Scholar 

  4. D.D. Feldman, L.J. Griffiths, A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. 42(4), 867–876 (1994)

    Article  Google Scholar 

  5. J. Goldberg, H. Messer, Inherent limitations in the localization of a coherently scattered source. IEEE Trans. Signal Process. 46(12), 3441–3444 (1998)

    Article  Google Scholar 

  6. Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)

    Article  MathSciNet  Google Scholar 

  7. Y. Gu, N.A. Goodman, S. Hong, Y. Li, Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 96, 375–381 (2014)

    Article  Google Scholar 

  8. F. Huang, W. Sheng, X. Ma, Modified projection approach for robust adaptive array beamforming. Signal Process. 92(7), 1758–1763 (2012)

    Article  Google Scholar 

  9. W. Jia, W. Jin, S. Zhou, M. Yao, Robust adaptive beamforming based on a new steering vector estimation algorithm. Signal Process. 93(9), 2539–2542 (2013)

    Article  Google Scholar 

  10. O. Kukrer, S. Mohammadzadeh, Generalised loading algorithm for adaptive beamforming in ULAs. IET Electron. Lett. 50(13), 910–912 (2014)

    Article  Google Scholar 

  11. C.C. Lee, J.H. Lee, Eigenspace-based adaptive array beamforming with robust capabilities. IEEE Trans. 45(12), 1711–1716 (1997)

    Article  Google Scholar 

  12. J. Li, P. Stoica, Z. Wang, On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Process. 51(7), 1702–1715 (2003)

    Article  Google Scholar 

  13. J.P. Lie, W. Ser, C. See, S. Meng, Adaptive uncertainty based iterative robust Capon beamformer using steering vector mismatch estimation. IEEE Trans. Signal Process. 59(9), 4483–4488 (2011)

    Article  MathSciNet  Google Scholar 

  14. X. Mestre, M.A. Lagunas, Finite sample size effect on minimum variance beamformers: optimum diagonal loading factor for large arrays. IEEE Trans. Signal Process. 54(1), 69–82 (2006)

    Article  Google Scholar 

  15. S. Nai, W. Ser, Z.L. Yu, H. Chen, Iterative robust minimum variance beamforming. IEEE Trans. Signal Process. 59(4), 1601–1611 (2011)

    Article  Google Scholar 

  16. P. Stoica, R.L. Moses, Spectral analysis of signals. In: Parametric Methods for Line Spectra (Prentice Hall, New Jersey, 2005), pp. 159–163

  17. H. Van Trees, Detection, Estimation, and Modulation Theory—Part IV Optimum Array Processing (Wiley, New York, 2002)

    Google Scholar 

  18. X. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Process. 130, 233–242 (2017)

    Article  Google Scholar 

  19. C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Signal Process. 67(2), 1099–1112 (2018)

    Google Scholar 

  20. C. Zhou, Z. Shi, Y. Gu, Coprime array adaptive beamforming with enhanced degrees-of-freedom capability. In: IEEE Conference on Radar, Seattle, WA, USA (2017) pp. 1357–1361

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammadzadeh.

Appendix

Appendix

1.1 Appendix A

The following inverse of a partitioned matrix [17] can be used to evaluate the inverse on the left-hand side of (10)

$$\begin{aligned} \left( \begin{array}{cc} \mathbf A \ &{} \mathbf C \\ \mathbf D \ &{} \mathbf B \end{array}\right) ^{-1} = \left( \begin{array}{c} 0 \\ \mathbf I \end{array}\right) \mathbf B ^{-1} \left( {\begin{array}{cc} 0\&\mathbf I \end{array}}\right) + \left( \begin{array}{c} \mathbf I \\ -\mathbf B ^{-1}{} \mathbf D \end{array}\right) (\mathbf A -\mathbf C {} \mathbf B ^{-1}{} \mathbf D )^{-1} \left( {\begin{array}{cc} \mathbf I&-\mathbf CB ^{-1} \end{array}}\right) \end{aligned}$$
(29)

where \( \mathbf A \in C^{m\times m} \) , \( \mathbf B \in C^{n\times n} \) , \( \mathbf C \in C^{m\times n} \), \( \mathbf D \in C^{n\times m} \). We need to find the inverse \( (\mathbf A ^H_s\mathbf A _s)^{-1} \) as follows:

$$\begin{aligned} (\mathbf A ^H_s\mathbf A _s)^{-1}= \left( \begin{array}{cc} \Arrowvert \mathbf a _o\Arrowvert ^2\ &{} \mathbf{a }_o^H\mathbf A _i\\ \mathbf A _i^H\mathbf a _o\ &{} \mathbf A _i^H\mathbf A _i \end{array}\right) ^{-1} \end{aligned}$$
(30)

with the appropriate associations

$$\begin{aligned} (\mathbf A ^H_s\mathbf A _s)^{-1}&= \left( \begin{array}{c} 0 \\ \mathbf I \end{array}\right) (\mathbf A ^H_i\mathbf A _i)^{-1} \left( {\begin{array}{cc} 0\&\mathbf I \end{array}}\right) + \dfrac{1}{\Arrowvert \mathbf a _o\Arrowvert ^2-\mathbf a _o^H\mathbf A _i(\mathbf A ^H_i\mathbf A _i)^{-1}{} \mathbf A _i^H\mathbf a _o}\ \nonumber \\ {}&\quad .\left( \begin{array}{c} 1 \\ -(\mathbf A ^H_i\mathbf A _i)^{-1}{} \mathbf A _i^H\mathbf a _o \end{array}\right) \left( {\begin{array}{cc} 1\&-\mathbf a _o^H\mathbf A _i(\mathbf A ^H_i\mathbf A _i)^{-1} \end{array}}\right) \end{aligned}$$
(31)

Multiplying the left-hand side of (31) by \( \mathbf A _s \) and the right-hand side by \( \mathbf A _s^H \) and rearranging (31) will be expressed as (10).

1.2 Appendix B

The matrix \( (\mathbf I +\lambda \mathbf R ) \) can be written as follows:

$$\begin{aligned} \mathbf I +\lambda \mathbf R =(1+\lambda \sigma ^2_n)\mathbf I +\lambda \sigma ^2_s\mathbf a _o\mathbf a _o^H+\lambda \mathbf A _i\varvec{\varSigma }_i\mathbf A ^H_i=\mathbf R _{n\lambda }+\lambda \sigma ^2_s\mathbf a _o\mathbf a _o^H \end{aligned}$$
(32)

where \( \mathbf R _{n\lambda }=(1+\lambda \sigma ^2_n)\mathbf I +\lambda \mathbf A _i\varvec{\varSigma }_i\mathbf A ^H_i \). Using the well-known matrix inversion lemma, the inverse becomes

$$\begin{aligned} (\mathbf I +\lambda \mathbf R )^{-1}=(\mathbf R _{n\lambda }+\lambda \sigma ^2_s\mathbf a _o\mathbf a _o^H)^{-1}=\mathbf R _{n\lambda }^{-1}-\mathbf R _{n\lambda }^{-1}\left( \dfrac{\lambda \sigma ^2_s\mathbf a _o\mathbf a _o^H}{1+\lambda \sigma ^2_s\mathbf a _o^H\mathbf R _{n\lambda }^{-1}{} \mathbf a _o}\right) \mathbf R _{n\lambda }^{-1} \end{aligned}$$
(33)

Again by using the same lemma, the inverse of \( \mathbf R _{n\lambda } \) can be written as follows:

$$\begin{aligned} \mathbf R _{n\lambda }^{-1}=\dfrac{1}{1+\lambda \sigma ^2_n}[\mathbf I -\mathbf A _i((\lambda _d+\sigma ^2_n)\varvec{\varSigma }_i^{-1}+\mathbf A _i^H\mathbf A _i)^{-1}{} \mathbf A _i^H]=\dfrac{1}{1+\lambda \sigma ^2_n}(\mathbf I -\mathbf P ) \end{aligned}$$
(34)

where \( \mathbf P \) is the second term within the square brackets and \( \lambda _d=1/\lambda \). By substituting (34) into (33) , multiplying both sides by \( \bar{\mathbf{a }} \) and simplifying gives

$$\begin{aligned} (\mathbf{I }+\lambda \mathbf{R })^{-1}{\bar{\mathbf{a }}}&=\dfrac{1}{1+\lambda \sigma ^{2}_{n}}\left[ (\mathbf{I }-\mathbf{P }){\bar{\mathbf{a }}}-\dfrac{\mathbf{a }_{o}^{H}(\mathbf{I }-\mathbf{P }){\bar{\mathbf{a }}}}{\mu (\lambda )+\mathbf{a }_{o}^{H}(\mathbf{I }-\mathbf{P })\mathbf{a }_{o}}(\mathbf{I }-\mathbf{P })\mathbf{a }_{o}\right] \nonumber \\ (1+\lambda \sigma ^2_n)(\mathbf{I }+\lambda \mathbf{R })^{-1}{\bar{\mathbf{a }}}&=(\mathbf{I }-\mathbf{P })[{\bar{\mathbf{a }}}-\eta (\lambda )\mathbf{a }_{o}] \nonumber \\&={\bar{\mathbf{a }}}-[\eta (\lambda )\mathbf{a }_{o}+\mathbf{P }({\bar{\mathbf{a }}}-\eta (\lambda )\mathbf{a }_{o})] \end{aligned}$$
(35)

where \( \mu (\lambda )=(1+\lambda \sigma ^2_n)/(\lambda \sigma ^2_s) \) and \( \eta (\lambda )=\mathbf a _o^H(\mathbf I -\mathbf P )\bar{\mathbf{a }}/ (\mu (\lambda )+\mathbf a _o^H(\mathbf I -\mathbf P )\mathbf a _o) \). From (35), we obtain

$$\begin{aligned} \hat{\mathbf{a }}_o(\lambda )&=\eta (\lambda )\mathbf a _o+\mathbf P (\bar{\mathbf{a }}-\eta (\lambda )\mathbf a _o) \nonumber \\&=\bar{\mathbf{a }}-(1+\lambda \sigma ^2_n)(\mathbf I +\lambda \mathbf R )^{-1}\bar{\mathbf{a }} \end{aligned}$$
(36)

Note that the noise power \( \sigma ^2_n \) can be estimated from the eigenvalue decomposition of the covariance matrix. Here, the minimum of the eigenvalues is taken as an estimate of the noise power.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, S., Kukrer, O. Modified Robust Capon Beamforming with Approximate Orthogonal Projection onto the Signal-Plus-Interference Subspace. Circuits Syst Signal Process 37, 5351–5368 (2018). https://doi.org/10.1007/s00034-018-0818-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0818-4

Keywords

Navigation