A DCT–SVD-Based Speech Steganography in Voiced Frames

  • Aniruddha Kanhe
  • G. Aghila


A novel speech steganography method is presented in this paper by cascading discrete cosine transform and singular value decomposition. The significance of the proposed method is that it utilizes the voiced part of the speech signal, making it highly imperceptible and robust. Imperceptibility of the proposed method is quantified by both signal-to-noise ratio and subjective listening tests. Our experimental results of bit error rate demonstrate that the proposed audio steganography method is robust against MP3 compression, AWGN, re-sampling and re-quantization attack with high data payload. The undetectability of proposed method is verified using a powerful steganalysis tool, and the results are compared with a well-known steganographic technique.


Speech steganography DCT SVD Voiced frames Unvoiced frames 


  1. 1.
    F.E. Abd El-Samie, An efficient singular value decomposition algorithm for digital audio watermarking. Int. J. Speech Technol. 12(1), 27–45 (2009). CrossRefGoogle Scholar
  2. 2.
    S. Ahani, S. Ghaemmaghami, Z.J. Wang, A sparse representation-based wavelet domain speech steganography method. IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 80–91 (2015). Google Scholar
  3. 3.
    M. Alhussein, G. Muhammad, Watermarking of Parkinson disease speech in cloud-based healthcare framework. Int. J. Distrib. Sens. Netw. 2015, 2:2–2:2 (2016). Google Scholar
  4. 4.
    A.H. Ali, An imperceptible and robust audio watermarking algorithm. EURASIP J. Audio Speech Music Process. 2014(1), 37 (2014). CrossRefGoogle Scholar
  5. 5.
    R.J. Anderson, F.A.P. Petitcolas, On the limits of steganography. IEEE J. Sel. Areas Commun. 16(4), 474–481 (1998). CrossRefGoogle Scholar
  6. 6.
    W. Bender, D. Gruhl, N. Morimoto, A. Lu, Techniques for data hiding. IBM Syst. J. 35(3.4), 313–336 (1996). CrossRefGoogle Scholar
  7. 7.
    V. K. Bhat, I. Sengupta, A. Das, An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digit. Signal Proc. 20(6), 1547–1558 (2010). CrossRefGoogle Scholar
  8. 8.
    V. K. Bhat, I. Sengupta, A. Das, A new audio watermarking scheme based on singular value decomposition and quantization. Circuits Syst. Signal Process. 30(5), 915–927 (2011). CrossRefGoogle Scholar
  9. 9.
    K. Bhowal, D. Bhattacharyya, A. Jyoti Pal, T.H. Kim, A GA based audio steganography with enhanced security. Telecommun. Syst. 52(4), 2197–2204 (2013). CrossRefGoogle Scholar
  10. 10.
    C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at
  11. 11.
    N. Cvejic, T. Seppanen, Increasing the capacity of LSB-based audio steganography, in 2002 IEEE Workshop on Multimedia Signal Processing, pp. 336–338 (2002).
  12. 12.
    A. Delforouzi, M. Pooyan, Adaptive digital audio steganography based on integer wavelet transform. Circuits Syst. Signal Process. 27(2), 247–259 (2008). MathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Djebbar, B. Ayad, K.A. Meraim, H. Hamam, Comparative study of digital audio steganography techniques. EURASIP J. Speech Music Process. 2012(1), 25 (2012). CrossRefGoogle Scholar
  14. 14.
    Y. Erfani, S. Siahpoush, Robust audio watermarking using improved TS echo hiding. Digit. Signal Process. 19(5), 809–814 (2009). CrossRefGoogle Scholar
  15. 15.
    M. Fallahpour, D. Megas, Robust audio watermarking based on Fibonacci numbers, in 2014 10th International Conference on Mobile Ad-hoc and Sensor Networks, pp. 343–349 (2014).
  16. 16.
    M. Fallahpour, D. Megias, Audio watermarking based on Fibonacci numbers. IEEE/ACM Trans. Audio Speech Lang. Process. 23(8), 1273–1282 (2015). CrossRefGoogle Scholar
  17. 17.
    L. Gang, A.N. Akansu, M. Ramkumar, Mp3 resistant oblivious steganography, in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 3, pp. 1365–1368 (2001).
  18. 18.
    K. Gopalan, Audio steganography by cepstrum modification, in IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. (ICASSP ’05), 2005, vol. 5, pp. v/481–v/484 (2005).
  19. 19.
    K. Gopalan, Q. Shi, Audio steganography using bit modification—a tradeoff on perceptibility and data robustness for large payload audio embedding, in 2010 Proceedings of 19th International Conference on Computer Communications and Networks, pp. 1–6. IEEE (2010).
  20. 20.
    K. Gopalan, S. Wenndt, Audio steganography for covert data transmission by imperceptible tone insertion, in Proceedings of the IASTED International Conference on Communication Systems and Applications (CSA 2004), Banff, Canada (2004)Google Scholar
  21. 21.
    K. Gopalan, S. Wenndt, A. Noga, D. Haddad, S. Adams, Covert speech communication via cover speech by tone insertion, in 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652), vol. 4, pp. 4_1647–4_1653 (2003).
  22. 22.
    M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. Witten, The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009). CrossRefGoogle Scholar
  23. 23.
    S. Hetzl, P. Mutzel, A Graph—Theoretic Approach to Steganography (Springer, Berlin, 2005), pp. 119–128. Google Scholar
  24. 24.
    H.T. Hu, L.Y. Hsu, A DWT-based rational dither modulation scheme for effective blind audio watermarking. Circuits Syst. Signal Process. 35(2), 553–572 (2016). CrossRefGoogle Scholar
  25. 25.
    Y. Hu, P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithms. Speech Commun. 49(7), 588–601 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Hu, P.C. Loizou, Evaluation of objective quality measures for speech enhancement. IEEE Trans. Speech Audio Process. 16(1), 229–238 (2008). CrossRefGoogle Scholar
  27. 27.
    H.T. Hu, S.J. Lin, L.Y. Hsu, Effective blind speech watermarking via adaptive mean modulation and package synchronization in DWT domain. EURASIP J. Audio Speech Music Process. 2017(1), 10 (2017)CrossRefGoogle Scholar
  28. 28.
    M.J. Hwang, J. Lee, M. Lee, H.G. Kang, SVD-based adaptive QIM watermarking on stereo audio signals. IEEE Trans. Multimed. 20(1), 45–54 (2018). CrossRefGoogle Scholar
  29. 29.
    A. Kanhe, G. Aghila, DCT based audio steganography in voiced and un-voiced, in Proceedings of the International Conference on Informatics and Analytics, ICIA-16, pp. 1–6. ACM (2016).
  30. 30.
    A. Kanhe, G. Aghila, C.S. Kiran, C. Ramesh, G. Jadav, M. Raj, Robust audio steganography based on advanced encryption standards in temporal domain, in 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1449–1453 (2015).
  31. 31.
    V. Korzhik, G. Morales-Luna, I. Fedyianin, Audio watermarking based on echo hiding with zero error probability. Int. J. Comput. Sci. Appl. Technomath. Res. Found. 10(1), 1–10 (2013)Google Scholar
  32. 32.
    X. Li, H.H. Yu, Transparent and robust audio data hiding in cepstrum domain, in 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532), vol. 1, pp. 397–400 (2000).
  33. 33.
    Y. Liu, K. Chiang, C. Corbett, R. Archibald, B. Mukherjee, D. Ghosal, A Novel Audio Steganalysis Based on High-Order Statistics of a Distortion Measure with Hausdorff Distance (Springer, Berlin, 2008), pp. 487–501. Google Scholar
  34. 34.
    Y. Ma J. Hu, P.C. Loizou, Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions. J. Acoust. Soc. Am. 125(5), 3387–3405 (2009)CrossRefGoogle Scholar
  35. 35.
    W.K. McDowell, W.B. Mikhael, A.P. Berg, Efficiency of the KLT on voiced and unvoiced speech as a function of segment size, in 2012 Proceedings of IEEE Southeastcon, pp. 1–5 (2012).
  36. 36.
    P. Moulin, J.A. O’Sullivan, Information-theoretic analysis of information hiding. IEEE Trans. Inf. Theory 49(3), 563–593 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    G. Muhammad, S.M.M. Rahman, A. Alelaiwi, A. Alamri, Smart health solution integrating iot and cloud: a case study of voice pathology monitoring. IEEE Commun. Mag. 55(1), 69–73 (2017). CrossRefGoogle Scholar
  38. 38.
    H. Ozer, B. Sankur, N. Memon, An SVD-based audio watermarking technique, in Proceedings of the 7th Workshop on Multimedia and Security ACM, New York, NY, USA, pp. 51–56 (2005).
  39. 39.
    L. Rabiner, B.H. Juang, Fundamentals of Speech Recognition (Prentice-Hall Inc, Upper Saddle River, 1993)zbMATHGoogle Scholar
  40. 40.
    S. Rekik, D. Guerchi, S.A. Selouani, H. Hamam, Speech steganography using wavelet and Fourier transforms. EURASIP J. Audio Speech Music Process. 2012(1), 1–14 (2012). CrossRefGoogle Scholar
  41. 41.
    P. Shah, P. Choudhari, S. Sivaraman, Adaptive wavelet packet based audio steganography using data history, in 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, pp. 1–5 (2008).
  42. 42.
    M. Steinebach, F.A.P. Petitcolas, F. Raynal, J. Dittmann, C. Fontaine, S. Seibel, N. Fates, L.C. Ferri, Stirmark benchmark: audio watermarking attacks, in Proceedings International Conference on Information Technology: Coding and Computing, pp. 49–54 (2001)Google Scholar
  43. 43.
    A. Sverdlov, S. Dexter, A.M. Eskicioglu, Robust DCT–SVD domain image watermarking for copyright protection: embedding data in all frequencies, in 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)Google Scholar
  44. 44.
    M.D. Swanson, M. Kobayashi, A.H. Tewfik, Multimedia data-embedding and watermarking technologies. Proc. IEEE 86(6), 1064–1087 (1998). CrossRefGoogle Scholar
  45. 45.
    X.Y. Wang, H. Zhao, A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans. Signal Process. 54(12), 4835–4840 (2006). CrossRefzbMATHGoogle Scholar
  46. 46.
    Y. Xiang, I. Natgunanathan, Y. Rong, S. Guo, Spread spectrum-based high embedding capacity watermarking method for audio signals. IEEE Trans. Audio Speech Lang. Process. 23(12), 2228–2237 (2015). CrossRefGoogle Scholar
  47. 47.
    Z. Xu, C. Ao, B. Huang, Channel capacity analysis of the multiple orthogonal sequence spread spectrum watermarking in audio signals. IEEE Signal Process. Lett. 23(1), 20–24 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology PuducherryKaraikalIndia
  2. 2.Department of Computer Science and EngineeringNational Institute of Technology PuducherryKaraikalIndia

Personalised recommendations