Skip to main content
Log in

A DWT-Based Rational Dither Modulation Scheme for Effective Blind Audio Watermarking

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A scheme jointly exploring the rational dither modulation (RDM) and auditory masking properties in the discrete wavelet transform (DWT) domain is proposed to achieve effective blind audio watermarking. The embedding of binary information is carried out by modulating coefficient vectors in the 5th-level approximation subband using the quantization steps estimated from past watermarked vectors. The robustness and payload capacity of the proposed scheme are maneuverable by varying vector dimensions, while the imperceptibility is ensured by constraining quantization noise below the auditory masking threshold. Furthermore, the periodic characteristic inherited in the RDM formulation can be used to re-establish synchronization for accurate watermark extraction. Experimental results show that the proposed DWT–RDM approach renders a near-zero objective difference grade in the perceptual evaluation of audio quality even when the signal-to-noise ratio maintains at a level near 20 dB. In most digital signal processing attacks, the bit error rates of retrieved watermarks are sufficiently low as compared to other recently developed methods with fewer payload capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Al-Haj, A. Mohammad, L. Bata, DWT-based audio watermarking. Int. Arab J. Inf. Technol. 8(3), 326–333 (2011)

    Google Scholar 

  2. P. Bassia, I. Pitas, N. Nikolaidis, Robust audio watermarking in the time domain. IEEE Trans. Multimed. 3(2), 232–241 (2001)

    Article  Google Scholar 

  3. V. Bhat, I. Sengupta, A. Das, An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digit. Signal Process. 20(6), 1547–1558 (2010)

    Article  Google Scholar 

  4. V. Bhat, I. Sengupta, A. Das, A new audio watermarking scheme based on singular value decomposition and quantization. Circuits Syst. Signal Process. 30(5), 915–927 (2011)

    Article  Google Scholar 

  5. B. Chen, G.W. Wornell, Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  7. M. Fallahpour, D. Megias, DWT-based high capacity audio watermarking. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E93–A(1), 331–335 (2010)

    Article  Google Scholar 

  8. J.J. Garcia-Hernandez, M. Nakano-Miyatake, H. Perez-Meana, Data hiding in audio signal using Rational Dither Modulation. IEICE Electron. Express 5(7), 217–222 (2008)

    Article  Google Scholar 

  9. X. He, M.S. Scordilis, An enhanced psychoacoustic model based on the discrete wavelet packet transform. J. Frankl. Inst. 343(7), 738–755 (2006)

    Article  MATH  Google Scholar 

  10. H.-T. Hu, L.-Y. Hsu, H.-H. Chou, Perceptual-based DWPT-DCT framework for selective blind audio watermarking. Signal Process. 105, 316–327 (2014)

    Article  Google Scholar 

  11. H.-T. Hu, L.-Y. Hsu, H.-H. Chou, Variable-dimensional vector modulation for perceptual-based DWT blind audio watermarking with adjustable payload capacity. Digit. Signal Process. 31, 115–123 (2014)

    Article  Google Scholar 

  12. H.-T. Hu, W.-H. Chen, A dual cepstrum-based watermarking scheme with self-synchronization. Signal Process. 92(4), 1109–1116 (2012)

    Article  Google Scholar 

  13. ITU-R Recommendation, BS. 1387, Method for objective measurements of perceived audio quality. (1998)

  14. P. Kabal, An examination and interpretation of ITU-R BS.1387: perceptual evaluation of audio quality, TSP Lab Technical Report, Department of Electrical and Computer Engineering, McGill University, (2002)

  15. S. Katzenbeisser, F.A.P. Petitcolas (Eds.), Information hiding techniques for steganography and digital watermarking (Artech House, Boston, 2000)

  16. B.Y. Lei, I.Y. Soon, Z. Li, Blind and robust audio watermarking scheme based on SVD–DCT. Signal Process. 91(8), 1973–1984 (2011)

    Article  MATH  Google Scholar 

  17. B. Lei, I.Y. Soon, F. Zhou, Z. Li, H. Lei, A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Process. 92(9), 1985–2001 (2012)

    Article  Google Scholar 

  18. X. Li, H.H. Yu, Transparent and robust audio data hiding in cepstrum domain. IEEE International Conference on Multimedia and Expo, (2000), pp. 397–400

  19. W.-N. Lie, L.-C. Chang, Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Trans. Multimed. 8(1), 46–59 (2006)

    Article  Google Scholar 

  20. S.C. Liu, S.D. Lin, BCH code-based robust audio watermarking in cepstrum domain. J. Inf. Sci. Eng. 22(3), 535–543 (2006)

    MathSciNet  Google Scholar 

  21. J. Liu, K. She, A hybrid approach of DWT and DCT for rational dither modulation watermarking. Circuits Syst. Signal Process. 31(2), 797–811 (2012)

    Article  MathSciNet  Google Scholar 

  22. D. Megías, J. Serra-Ruiz, M. Fallahpour, Efficient self-synchronised blind audio watermarking system based on time domain and FFT amplitude modification. Signal Process. 90(12), 3078–3092 (2010)

    Article  MATH  Google Scholar 

  23. G.R. Naik, D.K. Kumar, An overview of independent component analysis and its applications. Inform. Int. J. Comput. Inform. 35(1), 63–81 (2009)

    Google Scholar 

  24. G.R. Naik, W. Wang, Audio analysis of statistically instantaneous signals with mixed Gaussian probability distributions. Int. J. Electron. 99(10), 1333–1350 (2012)

    Article  Google Scholar 

  25. T. Painter, A. Spanias, Perceptual coding of digital audio. Proc. IEEE 88(4), 451–515 (2000)

    Article  Google Scholar 

  26. F. Perez-Gonzalez, C. Mosquera, M. Barni, A. Abrardo, Rational dither modulation: a high-rate data-hiding method invariant to gain attacks. IEEE Trans. Signal Process. 53(10), 3960–3975 (2005)

    Article  MathSciNet  Google Scholar 

  27. J. Seok, Audio watermarking using independent component analysis. J. Inf. Commun. Converg. Eng. 10(2), 175–180 (2012)

    Google Scholar 

  28. R. Tachibana, S. Shimizu, S. Kobayashi, T. Nakamura, An audio watermarking method using a two-dimensional pseudo-random array. Signal Process. 82(10), 1455–1469 (2002)

    Article  MATH  Google Scholar 

  29. I.D. Toolbox, http://cogsys.imm.dtu.dk/toolbox/ica/

  30. X. Wang, W. Qi, P. Niu, A new adaptive digital audio watermarking based on support vector regression. IEEE Trans. Audio Speech Lang. Process. 15(8), 2270–2277 (2007)

    Article  Google Scholar 

  31. H. Wang, R. Nishimura, Y. Suzuki, L. Mao, Fuzzy self-adaptive digital audio watermarking based on time-spread echo hiding. Appl. Acoust. 69(10), 868–874 (2008)

    Article  Google Scholar 

  32. X.-Y. Wang, P.-P. Niu, H.-Y. Yang, A robust digital audio watermarking based on statistics characteristics. Pattern Recognit. 42(11), 3057–3064 (2009)

    Article  MATH  Google Scholar 

  33. X.-Y. Wang, P.-P. Niu, M.-Y. Lu, A robust digital audio watermarking scheme using wavelet moment invariance. J. Syst. Softw. 84(8), 1408–1421 (2011)

    Article  Google Scholar 

  34. X. Wang, P. Wang, P. Zhang, S. Xu, H. Yang, A norm-space, adaptive, and blind audio watermarking algorithm by discrete wavelet transform. Signal Process. 93(4), 913–922 (2013)

    Article  Google Scholar 

  35. X.-Y. Wang, H. Zhao, A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans. Signal Process. 54(12), 4835–4840 (2006)

    Article  Google Scholar 

  36. L. Wei, X. Xiangyang, L. Peizhong, Localized audio watermarking technique robust against time-scale modification. IEEE Trans. Multimed. 8(1), 60–69 (2006)

    Article  Google Scholar 

  37. S. Wu, J. Huang, D. Huang, Y.Q. Shi, Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Trans. Broadcast. 51(1), 69–76 (2005)

    Article  Google Scholar 

  38. H.-T. Wu, Y.-M. Cheung, Secure watermarking on 3D geometry via ICA and orthogonal transformation, in Transactions on Data Hiding and Multimedia Security VII, ed. by Y. Shi (Springer, Berlin Heidelberg, 2012), pp. 52–62

    Chapter  Google Scholar 

  39. S. Xiang, H.J. Kim, J. Huang, Audio watermarking robust against time-scale modification and MP3 compression. Signal Process. 88(10), 2372–2387 (2008)

    Article  MATH  Google Scholar 

  40. S. Xiang, Audio watermarking robust against D/A and A/D conversions. EURASIP J. Adv. Signal Process. 2011(1), 1–14 (2011)

    Article  MATH  Google Scholar 

  41. I.-K. Yeo, H.J. Kim, Modified patchwork algorithm: a novel audio watermarking scheme. IEEE Trans. Speech Audio Process. 11(4), 381–386 (2003)

    Article  Google Scholar 

  42. X. Zhao, Y. Guo, J. Liu, Y. Yan, Quantization index modulation audio watermarking system using a psychoacoustic model, in 8th International Conference on Information, Communications and Signal Processing (ICICS) (2011),pp. 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwai-Tsu Hu.

Additional information

This research work was supported by the Ministry of Science and Technology, Taiwan, ROC under Grant MOST 103-2221-E-197-020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HT., Hsu, LY. A DWT-Based Rational Dither Modulation Scheme for Effective Blind Audio Watermarking. Circuits Syst Signal Process 35, 553–572 (2016). https://doi.org/10.1007/s00034-015-0074-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0074-9

Keywords

Navigation