Skip to main content
Log in

A Complex-Valued Mixing Matrix Estimation Algorithm for Underdetermined Blind Source Separation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers complex-valued mixing matrix estimation in underdetermined blind source separation. An effective estimation algorithm based on both single-source-point (SSP) detection and modified dynamic data field clustering is proposed. First, array-processing-based time–frequency SSP detection is applied to improve signal sparsity, therein utilizing the real and imaginary components of the observed signals in the time–frequency domain. The algorithm can be applied to the estimation of complex-valued mixing matrix based on L-shaped arrays and uniform circular arrays. Then, to overcome the limitation that the clustering performance of traditional algorithms is affected by noise, data cleansing detection is introduced to reselect the SSPs with high potential energy as representative objects to achieve preliminary data classification. Finally, a dynamic data field clustering algorithm is adopted to move and merge the representative objects until all column vectors of the mixing matrix are estimated. Simulation results show that the proposed method can effectively estimate complex-valued mixing matrices with high accuracy, especially in real-world noncooperative cases without prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Abrard, Y. Deville, A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  2. M. Aharon, M. Elad, A. Bruckstein, K-SVD an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  3. P. Bofill, M. Zibulevsky, Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)

    Article  MATH  Google Scholar 

  4. T.B. Dong, Y. Lei, J. Yang, An algorithm for underdetermined mixing matrix estimation. Neurocomputing 104(15), 26–34 (2013)

    Article  Google Scholar 

  5. B. Eunhyon, L. Kyunkyung, Closed-form 3-D localization for single source in uniform circular array with a center sensor. IEICE Trans. Communication. 92(3), 1053–1056 (2009)

    Google Scholar 

  6. G. Giachetta, Advanced classical field theory (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  7. Q. Guo, P. Nan, J. Wan, Signal classification method based on data mining for multi-mode radar. J. Syst. Eng. Electron. 27(5), 1010–1017 (2016)

    Article  Google Scholar 

  8. Y.B. Hua, T.K. Sarkar, D.D. Weiner, An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans. Antennas Propag. 39(2), 143–146 (1991)

    Article  Google Scholar 

  9. A. Jourjine, S. Rickard, Blind separation of disjoint orthogonal signals: demixing N sources from 2 mixtures. Acoust. Speech Signal Process. ICASSP 5, 2985–2988 (2000)

    Google Scholar 

  10. S.G. Kim, C.D. Yoo, Underdetermined blind source separation based on subspace representation. IEEE Trans. Signal Processing. 57(7), 2604–2614 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Li, S.I. Amari, A. Cichocki et al., Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)

    Article  MATH  Google Scholar 

  12. Y. Li, A. Cichocki, S.I. Amari, Analysis of sparse representation and blind source separation. Neural Comput. 16(6), 1193–1234 (2004)

    Article  MATH  Google Scholar 

  13. Y. Li, W. Nie, F. Ye, A complex mixing matrix estimation algorithm based on single source points. Circuits Syst. Signal Process. 34(11), 3709–3723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Li, Y.H. Shen, J.G. Wang, X.S. Ren, Estimation of the complex-valued mixing matrix by single-source-points detection with less sensors than sources. Trans. Emerg. Tel. Tech. 23(2), 137–147 (2012)

    Article  Google Scholar 

  15. B. Liu, Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes. IEEE Trans. Aerosp. Electron. Syst. 45(4), 1650–1657 (2009)

  16. M. Puigt, Y. Deville, Time-frequency ratio-based blind separation methods for attenuated and time-delayed sources. Mech. Syst. Signal Process. 19(6), 1348–1379 (2005)

    Article  Google Scholar 

  17. V.G. Reju, S.N. Koh, I.Y. Soon, An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process. 89(9), 1762–1773 (2009)

    Article  MATH  Google Scholar 

  18. J. Sun, Y. Li, J. Wen, S. Yan, Novel mixing matrix estimation approach in underdetermined blind source separation. Neurocomputing 173, 623–632 (2016)

    Article  Google Scholar 

  19. G. Tang, G.G. Luo, W.H. Zhang, Underdetermined blind source separation with variational mode decomposition for compound roller bearing fault signals. Sensors 16(6), 897–913 (2016)

    Article  Google Scholar 

  20. J.J. Thiagarajan, K.N. Ramamurthy, A. Spanias, Mixing matrix estimation using discriminative clustering for blind source separation. Digital Signal Process 23(1), 9–18 (2013)

    Article  MathSciNet  Google Scholar 

  21. S. Wang, W. Gan, D.Y. Li, D.R. Li, Data field for hierarchical clustering. Int. J. Data Warehous. Min. 7(4), 43–63 (2011)

    Article  Google Scholar 

  22. S.J. Wu, J.Z. Zhang, S. Zhang, Array geometry based on fixed elements. J Harbin Eng. Univ. 24(2), 221–225 (2003)

    Google Scholar 

  23. O. Yilmaz, S. Rickard, Blind separation of speech mixture via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Zhang, G. Wang, P. Cai et al., A fast blind source separation algorithm based on the temporal structure of signals. Neurocomputing 139(9), 261–271 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61371172), the International S&T Cooperation Program of China (ISTCP) (No. 2015DFR10220), the National Key Research and Development Program of China (No. 2016YFC0101700), the Fundamental Research Funds for the Central Universities (No. HEUCF1508), and the Natural Science Foundation of Heilongjiang Province (No. F201337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Ruan.

Appendices

Appendix A: The Defined Variables

Consider that there is only one effective source \(s_n(t)\) with a relatively large value at any TF point \((t_1,f_1)\); then, Eq. (5) can be described as

$$\begin{aligned} \left\{ \begin{array}{ll} X_m^x(t_1,f_1) = a_{mn}^xS_n(t_1,f_1)\\ X_m^y(t_1,f_1) = a_{mn}^yS_n(t_1,f_1).\\ \end{array} \right. \end{aligned}$$
(26)

Then, we obtain

$$\begin{aligned} \begin{aligned} Re\left[ X_m^x(t_1,f_1)\right]&= Re(a^x_{mn})Re\left[ S_n(t_1,f_1)\right] -Im(a^x_{mn})Im\left[ S_n(t_1,f_1)\right] \end{aligned} \end{aligned}$$
(27)
$$\begin{aligned} \begin{aligned} Im\left[ X_m^x(t_1,f_1)\right]&= Im(a^x_{mn})Re\left[ S_n(t_1,f_1)\right] +Re(a^x_{mn})Im\left[ S_n(t_1,f_1)\right] \end{aligned} \end{aligned}$$
(28)
$$\begin{aligned} \begin{aligned} Re\left[ X_m^y(t_1,f_1)\right]&= Re(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] -Im(a^y_{mn})Im\left[ S_n(t_1,f_1)\right] \end{aligned} \end{aligned}$$
(29)
$$\begin{aligned} \begin{aligned} Im\left[ X_m^y(t_1,f_1)\right]&= Im(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] +Re(a^y_{mn})Im\left[ S_n(t_1,f_1)\right] . \end{aligned} \end{aligned}$$
(30)

From Eqs. (27), (28), (29) and (30), the following equations are obtained:

$$\begin{aligned} \begin{aligned}&Re\left[ X_m^x(t_1,f_1)\right] Re\left[ X_m^y(t_1,f_1)\right] \\&\quad = Re(a^x_{mn}) Re(a^y_{mn})Re^2\left[ S_n(t_1,f_1)\right] +Im(a^y_{mn})Im(a^x_{mn})Im^2\left[ S_n(t_1,f_1)\right] \\&\qquad -Re(a^x_{mn})Im(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\&\qquad -Re(a^y_{mn})Im(a^x_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\ \end{aligned}\qquad \end{aligned}$$
(31)
$$\begin{aligned} \begin{aligned}&Im\left[ X_m^x(t_1,f_1)\right] Im\left[ X_m^y(t_1,f_1)\right] \\&\quad = Im(a^x_{mn}) Im(a^y_{mn})Re^2\left[ S_n(t_1,f_1)\right] +Re(a^y_{mn})Re(a^x_{mn})Im^2\left[ S_n(t_1,f_1)\right] \\&\qquad +Im(a^x_{mn})Re(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\&\qquad +Re(a^x_{mn})Im(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\ \end{aligned}\qquad \end{aligned}$$
(32)
$$\begin{aligned} \begin{aligned}&Re\left[ X_m^x(t_1,f_1)\right] Im\left[ X_m^y(t_1,f_1)\right] \\&\quad = Re(a^x_{mn}) Im(a^y_{mn})Re^2\left[ S_n(t_1,f_1)\right] -Im(a^x_{mn})Re(a^y_{mn})Im^2\left[ S_n(t_1,f_1)\right] \\&\qquad +Re(a^x_{mn})Re(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\&\qquad -Im(a^y_{mn})Im(a^x_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\ \end{aligned}\qquad \end{aligned}$$
(33)
$$\begin{aligned} \begin{aligned}&Im\left[ X_m^x(t_1,f_1)\right] Re\left[ X_m^y(t_1,f_1)\right] \\&\quad = Im(a^x_{mn})Re(a^y_{mn})Re^2\left[ S_n(t_1,f_1)\right] -Im(a^y_{mn})Re(a^x_{mn})Im^2\left[ S_n(t_1,f_1)\right] \\&\qquad -Im(a^x_{mn})Im(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] \\&\qquad +Re(a^x_{mn})Re(a^y_{mn})Re\left[ S_n(t_1,f_1)\right] Im\left[ S_n(t_1,f_1)\right] .\qquad \\ \end{aligned} \end{aligned}$$
(34)

Then, we define the variables

$$\begin{aligned} \begin{aligned} Z_n&=Re\left[ X_m^x(t_1,f_1)\right] Re\left[ X_m^y(t_1,f_1)\right] +Im\left[ X_m^x(t_1,f_1)\right] Im\left[ X_m^y(t_1,f_1)\right] \\&=\left| \begin{array}{ll} Re\left[ X^x_m(t_1,f_1)\right] &{} -Im\left[ X^x_m(t_1,f_1)\right] \\ Im\left[ X^y_m(t_1,f_1)\right] &{} Re\left[ X^y_m(t_1,f_1)\right] \\ \end{array} \right| \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned} \begin{aligned} Y_n&= Re\left[ X_m^x(t_1,f_1)\right] Im\left[ X_m^y(t_1,f_1)\right] - Im\left[ X_m^x(t_1,f_1)\right] Re\left[ X_m^y(t_1,f_1)\right] \\&=\left| \begin{array}{ll} Re\left[ X^x_m(t_1,f_1)\right] &{} Im\left[ X^x_m(t_1,f_1)\right] \\ Re\left[ X^y_m(t_1,f_1)\right] &{} Im\left[ X^y_m(t_1,f_1)\right] \\ \end{array} \right| . \end{aligned} \end{aligned}$$
(36)

Based on Eqs. (3) and (4) and the above formulas, we obtain the following equation after simplification:

$$\begin{aligned} \begin{aligned} \frac{Z_n}{Y_n}&=\frac{Re(a^x_{mn})Re(a^y_{mn}) + Im(a^x_{mn})Im(a^y_{mn})}{Re(a^x_{mn})Im(a^y_{mn}) - Im(a^x_{mn})Re(a^y_{mn})}\\&=\frac{1}{\tan [u(\sin \phi _n \sin \theta _n -\cos \phi _n \sin \theta _n)]} \\&=g(\phi _n,\theta _n), \end{aligned} \end{aligned}$$
(37)

where \(u=2 \pi d(m-1)/\lambda \). \(g(\phi _n,\theta _n)\) is a function of \(\phi _n\) and \(\theta _n\); this means that the signals from one source in the TF domain have the same slopes using \(Y_n\) and \(Z_n\) as the coordinate axis x and y, respectively. Thus, the newly defined variables can cluster signals from one source in the TF domain.

The derivation is completed.

Appendix B: Extending to the Uniform Circular Array Model

Figure 9 describes the model of the uniform circular array with radius R. According to [5, 22], this special uniform circular array is called the “uniform circular array with a center sensor.” Comparing with the conventional uniform circular array, this array has a narrower main lobe and a lower side lobe such that interference outside the main lobe can be suppressed more effectively. Assume that there are M sensors and N far-field sources. The reference sensor is positioned at the center point of the circular array. The nth source two-dimensional DOA is \(\left( \theta _n,\phi _n\right) \), where \(\phi _n\) and \(\theta _n\) denote the azimuth and elevation.

Fig. 9
figure 9

Model of the uniform circular array

The time delay for the nth source to the mth sensor is \(\tau _{mn}= \cos ( \frac{2\pi }{M-1}(m-2) - \phi _n)sin( \theta _n)\frac{ R}{v}\); then, we can obtain the mixing matrix A

$$\begin{aligned} {\mathbf {A}}= \begin{bmatrix} 1&\cdots&1 \\ e^{j 2\pi f\tau _{21}}&\cdots&e^{j 2\pi f\tau _{2N}}\\ \vdots&\ddots&\vdots \\ e^{j 2\pi f\tau _{M1}}&\cdots&e^{j 2\pi f\tau _{MN}} \\ \end{bmatrix} = \begin{bmatrix} {\begin{matrix} 1 &{} \cdots &{} 1 \\ e^{j\xi _1 \cos \phi _1 } &{} \cdots &{} e^{j\xi _N \cos \phi _N } \\ \vdots &{} \ddots &{}\vdots \\ e^{j\xi _1 \cos \left( \frac{2\pi }{M-1} (M-2) - \phi _1\right) } &{} \cdots &{} e^{j\xi _N \cos \left( \frac{2\pi }{M-1} (M-2) - \phi _N\right) } \\ \end{matrix}} \end{bmatrix} \end{aligned}$$
(38)

where \(\xi _N=2\pi R \sin \theta _N/ \lambda \). Set the center of the array as the reference sensor. \({\mathbf {A}}\) has a similar structure as the mixing matrix of ULA, which means that \( a_{1n}=1 \) and \( \Vert a_{mn}\Vert =1 (m\not =1)\), and the above prerequisites are fundamental to Eq. (6) [14]. Therefore, we can obtain the same conclusion for the SSP identification.

However, the SSPs cannot be clustered because the mixing matrix \({\mathbf {A}}\) contains complex values for circular arrays. Therefore, as in the L-shaped algorithm, we define \(Y_n\) and \(Z_n\). Consider only one effective source \(s_n(t)\) with a relatively large value at any TF point \((t_1,f_1)\).

$$\begin{aligned} Y_n= & {} \left| \begin{array}{ll} Re\left[ X_m(t_1,f_1)\right] &{} Im\left[ X_m(t_1,f_1)\right] \\ Re\left[ X_{m+1}(t_1,f_1)\right] &{} Im\left[ X_{m+1}(t_1,f_1)\right] \\ \end{array} \right| \end{aligned}$$
(39)
$$\begin{aligned} Z_n= & {} \left| \begin{array}{ll} Re\left[ X_m(t_1,f_1)\right] &{} -Im\left[ X_m(t_1,f_1)\right] \\ Im\left[ X_{m+1}(t_1,f_1)\right] &{} Re\left[ X_{m+1}(t_1,f_1)\right] \\ \end{array} \right| , \end{aligned}$$
(40)

where \(X_m(t_1,f_1)\) and \(X_{m+1}(t_1,f_1)\) represent the STFT coefficients of the mth and \((m+1)\)th sensor signals, respectively, and \(2 \le m \le M\).

Similar to Eqs. (11) and (12), we can obtain

$$\begin{aligned} \left[ \frac{Z_n}{Y_n}\right] _m&= \frac{Re(a_{mn})Re(a_{(m+1)n})+Im(a_{(m+1)n})Im(a_{mn})}{Re(a_{mn})Im(a_{(m+1)n})-Re(a_{(m+1)n})Im(a_{mn})}\nonumber \\&=\frac{1}{tan\left\{ \xi _n\left[ \cos \left( \frac{2\pi (m-1)}{(M-1)}-\phi _n\right) - \cos \left( \frac{2\pi (m-2)}{(M-1)}-\phi _n\right) \right] \right\} }\nonumber \\&=\frac{1}{tan\left\{ 2 \xi _n \sin \left( \frac{\pi }{M-1}\right) \left[ \sin \left( \frac{\pi }{(M-1)}(2m-3)-\phi _n\right) \right] \right\} }&m\ge 2 \end{aligned}$$
(41)
$$\begin{aligned} \left[ \frac{Z_n}{Y_n}\right] _1&= \frac{Re(a_{mn})Re(a_{1n})+Im(a_{1n})Im(a_{mn})}{Re(a_{mn})Im(a_{1n})-Re(a_{1n})Im(a_{mn})}\nonumber \\&= -\frac{1}{tan\left( \xi _n \cos \left[ \frac{2\pi }{M-1}(m-2)-\phi _n\right] \right. }&m = 1, \end{aligned}$$
(42)

where \(\xi _n=2\pi R \sin \theta _n/ \lambda \). \(Re(a_{1n})=1\) and \(Im(a_{1n})=0\).

Equations (41) and (42) are functions of \(\phi _n\) and \(\theta _n\). This means that the SSPs in the TF domain have the same slopes when using \(Y_n\) and \(Z_n\) as the coordinate axes x and y, respectively. To validate the above derivation, we perform a simulation. The parameter setting and sources are the same as in Experiment 2. The results are averaged over 50 Monte Carlo trials under the 20 dB SNR condition. The NMSE of TIFROM, DUET and the proposed algorithms based on uniform circular arrays is \(-33.1, -34.3 and -35.8\) dB, respectively. Similar to the L-shaped array, the simulation results show the applicability of the proposed algorithm to uniform circular arrays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Ruan, G. & Qi, L. A Complex-Valued Mixing Matrix Estimation Algorithm for Underdetermined Blind Source Separation. Circuits Syst Signal Process 37, 3206–3226 (2018). https://doi.org/10.1007/s00034-018-0796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0796-6

Keywords

Navigation