Skip to main content
Log in

Data-Selective Volterra Adaptive Filters

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work proposes the use of data-selective schemes in Volterra adaptive filters. By working only with input data that brings novelty to the system, thus avoiding unnecessary parameter updates, one can reduce drastically the high computational burden associated with the use of Volterra series. Considering a nonlinear system identification setup, results show that the proposed data-selective Volterra filters update in only 7.5% of the iterations, whereas in a nonlinear channel equalization setup the update rate is around 27%, without compromising the performance in terms of mean squared error or bit-error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Here the weighting matrix \(\mathbf {G}[k]\) is the same as the one employed in the set-membership case, whose update equation is described in (5).

  2. The delay values were chosen based on prior simulations.

References

  1. R. Arablouei, K. Dogançay, Set-membership recursive least-squares adaptive filtering algorithm. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3765–3768 (2012)

  2. L.A. Azpicueta-Ruiz, M. Zeller, A.R. Figueiras-Vidal, J. Arenas-Garcia, W. Kellermann, Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 19(1), 97–110 (2011)

    Article  MATH  Google Scholar 

  3. E.L.O. Batista, R. Seara, A novel reduced-rank approach for implementing Volterra filters. In: 24th European Signal Processing Conference (EUSIPCO), pp. 1778–1782. Budapest, Hungary (2016)

  4. E.L.O. Batista, O.J. Tobias, R. Seara, A fully LMS adaptive interpolated Volterra structure, In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Las Vegas, USA, 2008), pp. 3613–3616

  5. E.L.O. Batista, O.J. Tobias, R. Seara, A sparse-interpolated scheme for implementing adaptive Volterra filters. IEEE Trans. Signal Process. 58(4), 2022–2035 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Benedetto, E. Biglieri, R. Daffara, Modeling and performance evaluation of nonlinear satellite links—a Volterra series approach. IEEE Trans. Aerosp. Electron. Syst. 15(4), 494–507 (1979)

    Article  Google Scholar 

  7. E. Biglieri, A. Gersho, R. Gitlin, T. Lim, Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission. IEEE J. Sel. Areas Commun. 2(5), 765–777 (1984)

    Article  Google Scholar 

  8. L. Cristaldi, M. Faifer, C. Laurano, R. Ottoboni, S. Toscani, M. Zanoni, Iterative method for the definition of frequency-domain Volterra models. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. Torino, Italy (2017)

  9. F.B. da Silva, W.A. Martins, A computational platform for visible light communications. In: XXXV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2017), pp. 891–895. São Pedro, Brazil (2017)

  10. P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th edn. (Springer, New York, 2012)

    MATH  Google Scholar 

  11. H. Enzinger, K. Freiberger, G. Kubin, C. Vogel, Fast time-domain Volterra filtering, In Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, USA, 2016), pp. 225–228

  12. G.B. Giannakis, E. Serpedin, Linear multichannel blind equalizers of nonlinear FIR Volterra channels. IEEE Trans. Signal Process. 45(1), 67–81 (1997)

    Article  Google Scholar 

  13. S. Gollamudi, S. Kapoor, S. Nagaraj, Y.F. Huang, Set-membership adaptive equalization and an updator-shared implementation for multiple channel communications systems. IEEE Trans. Signal Process. 46(9), 2372–2385 (1998)

    Article  Google Scholar 

  14. G.C. Goodwin, R.L. Payne, Dynamic System Identification: Experiment Design and Data Analysis (Academic Press, Cambridge, 1977)

    MATH  Google Scholar 

  15. A. Guerin, G. Faucon, R.L. Bouquin-Jeannes, Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans. Speech Audio Process. 11(6), 672–683 (2003)

    Article  Google Scholar 

  16. S.S. Haykin, Adaptive Filter Theory, 4th edn. (Pearson Education, Carmel, 2008)

    MATH  Google Scholar 

  17. W. He, Z. Chan, C. Sun, Y. Chen, Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 47(10), 3452–3465 (2017)

    Article  Google Scholar 

  18. W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  19. W. He, Y. Dong, C. Sun, Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  20. W. He, S.S. Ge, Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Kuech, W. Kellermann, Proportionate NLMS algorithm for second-order Volterra filters and its application to nonlinear echo cancellation. In: Int. Workshop Acoustic Echo Noise Control (IWAENC), pp. 75–78. Kyoto, Japan (2003)

  22. G. Lazzarin, S. Pupolin, A. Sarti, Nonlinearity compensation in digital radio systems. IEEE Trans. Commun. 42(234), 988–999 (1994)

    Article  Google Scholar 

  23. K. Li, J.C. Príncipe, The kernel adaptive autoregressive-moving-average algorithm. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 334–346 (2016)

    Article  MathSciNet  Google Scholar 

  24. M.V.S. Lima, T.N. Ferreira, W.A. Martins, P.S.R. Diniz, Sparsity-aware data-selective adaptive filters. IEEE Trans. Signal Process. 62(17), 4557–4572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Liu, J.C. Principe, S.S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction (Wiley, Hoboken, 2011)

    Google Scholar 

  26. V.J. Mathews, Adaptive polynomial filters. IEEE Signal Process. Mag. 8(3), 10–26 (1991)

    Article  Google Scholar 

  27. R. Mesleh, H. Elgala, H. Haas, LED nonlinearity mitigation techniques in optical wireless OFDM communication systems. IEEE/OSA J. Opt. Commun. Netw. 4(11), 865–875 (2012)

    Article  Google Scholar 

  28. S. Nagaraj, S. Gollamudi, S. Kapoor, Y.F. Huang, BEACON: an adaptive set-membership filtering technique with sparse updates. IEEE Trans. Signal Process. 47(11), 2928–2941 (1999)

    Article  Google Scholar 

  29. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. (Part I: Communications) 67(5), 19–27 (1984)

    Article  MathSciNet  Google Scholar 

  30. J. Park, J.H. Chang, Frequency-domain Volterra filter based on data-driven soft decision for nonlinear acoustic echo suppression. IEEE Signal Process. Lett. 21(9), 1088–1092 (2014)

    Article  Google Scholar 

  31. A.K. Rao, Y.F. Huang, Tracking characteristics of an OBE parameter-estimation algorithm. IEEE Trans. Signal Process. 41(3), 1140–1148 (1993)

    Article  MATH  Google Scholar 

  32. M.A. Takizawa, M. Yukawa, Adaptive nonlinear estimation based on parallel projection along affine subspaces in reproducing kernel Hilbert space. IEEE Trans. Signal Process. 63(16), 4257–4269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Werner, J.A. Apolinário, P.S.R. Diniz, Set-membership proportionate affine projection algorithms. EURASIP J. Audio Speech Music Process. 2007(1), 10–10 (2007)

    Google Scholar 

  34. S. Werner, J.A. Apolinário, P.S.R. Diniz, T.I. Laakso, A set-membership approach to normalized proportionate adaptation algorithms. In: 2005 13th European Signal Processing Conference, pp. 1–4. Antalya, Turkey (2005)

  35. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson, Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64(8), 1151–1162 (1976)

    Article  MathSciNet  Google Scholar 

  36. H. Yazdanpanah, P.S.R. Diniz, M.V.S. Lima, A simple set-membership affine projection algorithm for sparse system modeling. In: 24th European Signal Processing Conference (EUSIPCO), pp. 1798–1802. Budapest, Hungary (2016)

  37. M. Zeller, W. Kellermann, Fast and robust adaptation of DFT-domain Volterra filters in diagonal coordinates using iterated coefficient updates. IEEE Trans. Signal Process. 58(3), 1589–1604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe B. da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.B., Martins, W.A. Data-Selective Volterra Adaptive Filters. Circuits Syst Signal Process 37, 4651–4664 (2018). https://doi.org/10.1007/s00034-018-0765-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0765-0

Keywords

Navigation