Skip to main content
Log in

Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a method for the dual estimation is proposed. This approach combines extended marginal particle filter (EMPF) with particle swarm optimization (PSO) for simultaneous estimation of state and parameter values in nonlinear stochastic state–space models. In the proposed method, the states are estimated by EMPF and the parameters are estimated by PSO. The performance of proposed algorithm is evaluated in two examples. Simulation results demonstrate the feasibility and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for Online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. S.E. Azam, S. Mariani, Dual estimation of partially observed nonlinear structural systems: a particle filter approach. Mech, Res. Commun. 46, 54–61 (2012)

    Article  Google Scholar 

  3. C. Andrieu, A. Doucet, S.S. Singh, Particle methods for change detection, system identification, and control. Proc. IEEE 92(3), 423–438 (2004)

    Article  Google Scholar 

  4. C. Andrieu, A. Doucet, V. Tadic, On-line parameter estimation in general state-space models, in Proceedings 44th IEEE Conference on Decision and Control, Seville (2005)

  5. C. Berzuini, N.G. Best, W.R. Gilks, Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Am. Stat. Assoc. 92(1), 1403–1411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bolic, P.M. Djuric, S. Hong, Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal Process. 53(7), 2442–2450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Cappe, S.J. Godsill, E. Moulines, An overview of existing methods and recent advances in sequential Monte Carlo. IEEE Proc. Signal Process. 95(5), 899–924 (2007)

    Google Scholar 

  8. D. Creal, Analysis of filtering and smoothing algorithms for Levy-driven stochastic volatility models. Comput. Stat. Data Anal. 52(1), 2863–2876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. C.M. Carvalho, H.F. Lopes, Simulation-based sequential analysis of Markov switching stochastic volatility models. Comput. Stat. Data Anal. 51(2), 4526–4542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Doucet, V.B. Tadic, Parameter estimation in general state-space models using particle methods. Ann. Inst. Stat. Math. 55(2), 409–422 (2003)

    MathSciNet  MATH  Google Scholar 

  11. C. Fen, M. Wang, Q.B. Ji, Analysis and comparison of resampling algorithms in particle filter. J. Syst. Simul. 21(4), 1101–1105 (2009)

    Google Scholar 

  12. R.B. Gopaluni, A particle filter approach to identification of nonlinear processes under missing observations. Can. J. Chem. Eng. 86, 1081–1092 (2008)

    Article  Google Scholar 

  13. R.B. Gopaluni, Nonlinear system identification unde rmissing observations: the case of unknown model structure. J. Process Control 20(3), 314–324 (2010)

    Article  Google Scholar 

  14. S. Julier, J. Uhlmann, New extension of the Kalman filter to nonlinear systems. in: I. Kadar (Ed.), Proceedings of Signal Processing, Sensor Fusion, and Target Recognition VI, 3068, 182–193 (1997)

  15. A.M. Johansson, E.A.Lehmann Lehmann, Evolutionary optimization of dynamic models in sequential Monte Carlo target tracking. IEEE Trans. Evol. Comput. 13(4), 879–894 (2009)

    Article  Google Scholar 

  16. N. Kantas, A. Doucet, S.S. Singh, J. Maciejowski. An overview of sequential Monte Carlo methods for parameter estimation on general state space models, in: E. Walter (Ed.), Proceedings of the 15th IFAC Symposium on System Identification 15, 774–785 (2009)

  17. M. Klaas, N. de Freitas, and A. Doucet, Toward practical N Monte Carlo: the marginal particle filter, in Presented at the 21st conference uncertainty artificial intelligence, Edinburgh, Scotland (2005)

  18. J. Liu, M. West, Combined parameter and state estimation in simulation-based filtering, in Sequential Monte Carlo Methods in Practice, ed. by A. Doucet, J.F.G. de Freitas, N.J. de Freitas (Springer-Verlag, New York, 2001)

    Google Scholar 

  19. D.S. Lee, N.K.K. Chia, A particle algorithm for sequential Bayesian parameter estimation and model selection. IEEE Trans. Signal Process. 50(2), 326–336 (2002)

    Article  Google Scholar 

  20. J. Liu, B. Cai, Y. Wang, Particle swarm optimization for vehicle positioning based on robust cubature Kalman filter. Asian J. Control 17(2), 648–663 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Maeda, N. Matsushita, S. Miyoshi, H. Hikawa, On simultaneous perturbation particle swarm optimization. IEEE Congress on Evolutionary Computation (2009)

  22. Y. Maeda, N. Matsushita, Combination of particle swarm optimization and simultaneous perturbation, IEEE Congress Evolutionary Computation (2008)

  23. L.E. Olivier, B. Huang, I.K. Craig, Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill. J. Process Control 22, 710–717 (2012)

    Article  Google Scholar 

  24. S. Park, J. Hwang, E. Kim, H. Kang, A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans. Evolut. Comput. 13, 801–809 (2009)

    Article  Google Scholar 

  25. H. Pan, X. Jing, W. Sun, H. Gao, A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems, in IEEE transactions on control systems technology, PP(99), 1–12 (2017)

  26. G. Poyiadjis, A. Doucet, S.S. Singh, Maximum likelihood parameter estimation in general state-space models using particle methods, in Proceedings of the American Statistical Association, Minneapolis, USA (2005)

  27. N. Sadaghzadeh, J. Poshtan, A. Wagner, E. Nordheimer, E. Badreddin, Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot attitude estimation. ISA Trans. 53(2), 524–532 (2014)

    Article  Google Scholar 

  28. W. Sun, H. Pan, H. Gao, Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65(6), 4619–4626 (2016)

    Article  Google Scholar 

  29. J.C. Spall, Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerospace Electron. Syst. 34(3), 817–823 (1998)

    Article  Google Scholar 

  30. R. Thangaraj,M. Pant and A. Abraham, A new diversity guided particle swarm optimization with mutation, in World congress on Nature and Biolgically Inspired Computing, NaBIC 2009 (2009)

  31. A.G.Wills, T. Schon, B. Ninness, Parameter estimation for discrete-time nonlinear systems using EM, in Proceedings of the 17th IFAC World Congress, Seoul, South Korea (2008)

  32. X. Yang, K. Xing, K. Shi, Q. Pan, Joint state and parameter estimation in particle filtering and stochastic optimization. J. Control Theory Appl. 6(2), 215–220 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Havangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havangi, R. Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization. Circuits Syst Signal Process 37, 3558–3575 (2018). https://doi.org/10.1007/s00034-017-0721-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0721-4

Keywords

Navigation