Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 3, pp 915–938 | Cite as

On the Analysis and Design of Fractional-Order Chebyshev Complex Filter

  • Amr M. AbdelAty
  • Ahmed Soltan
  • Waleed A. Ahmed
  • Ahmed G. Radwan
Article

Abstract

This paper introduces the concept of fractional-order complex Chebyshev filter. A fractional variation of Chebyshev differential equations is introduced based on Caputo fractional operator. The proposed equation is solved using fractional Taylor power series method. The condition for fractional polynomial solutions is obtained and the first four polynomials scaled using an appropriate scaling factor. The fractional-order complex Chebyshev low-pass filter based on the obtained fractional polynomials is developed. Two methods for obtaining the transfer functions of the complex filter are discussed. Circuit implementations are simulated using Advanced Design System (ADS) and compared with MATLAB numerical simulation of the obtained transfer functions to prove the validity of the two approaches.

Keywords

Fractional differential equation Series solution Chebyshev polynomials Chebyshev filter Fractional-order filter Complex filter 

References

  1. 1.
    A. Acharya, S. Das, I. Pan, S. Das, Extending the concept of analog Butterworth filter for fractional order systems. Sig. Process. 94(1), 409–420 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Adhikary, S. Sen, K. Biswas, Practical realization of tunable fractional order parallel resonator and fractional order filters. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1142–1151 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.A. Al-Bassam, On the existence of series solution of differential equations of generalized order. Port. Math. 29(1), 5–11 (1970)MathSciNetMATHGoogle Scholar
  4. 4.
    A.S. Ali, A.G. Radwan, A.M. Soliman, Fractional order butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)CrossRefGoogle Scholar
  5. 5.
    P.C. Biswal, Ordinary Differential Equations, 2nd edn. (PHI Learning Pvt. Ltd, Delhi, 2012)MATHGoogle Scholar
  6. 6.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover Publications, 2000)Google Scholar
  7. 7.
    M.S. Chavan, R.A. Agarwala, M.D. Uplane, Comparative study of Chebyshev I and Chebyshev II filter used for noise reduction in ECG signal. Sig. Process. 2(1), 1–17 (2008)MATHGoogle Scholar
  8. 8.
    Y. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator. Sig. Process. 83(11), 2359–2365 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    J. Crols, M. Steyaert, Transceivers in the frequency domain. in ed by C. Wirel, Transceiver Des, pp 29–70. Springer, Boston (2003)Google Scholar
  10. 10.
    E.C. de Oliveira, J.A. Tenreiro Machado, A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014(1940), 1–6 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    B.K. Dutta, L.K. Arora, Approximate solution of inhomogeneous fractional differential equation. Adv. Nonlinear Anal. 1(4), 335–353 (2012)MathSciNetMATHGoogle Scholar
  12. 12.
    O.S. Fard, R. BeheshtAien, A note on fuzzy best approximation using Chebyshev’s polynomials. J. King Saud Univ. Sci. 23(2), 217–221 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 383–396 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Fedele, A. Ferrise, Periodic disturbance rejection for fractional-order dynamical systems. Fract. Calc. Appl. Anal. 18(3), 603–620 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    T. Freeborn, B. Maundy, A.S. Elwakil, Approximated fractional order Chebyshev lowpass filters. Math. Probl. Eng. 2015(4), 1–7 (2015)CrossRefGoogle Scholar
  16. 16.
    T.J. Freeborn, Comparison of \((1+\alpha )\)fractional-order transfer functions to approximate lowpass butterworth magnitude responses. Circuits Syst. Signal Process. 35(6), 1983–2002 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circuits Syst. Signal Process. 35(6), 1973–1982 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    T.J. Freeborn, B. Maundy, A. Elwakil, Towards the realization of fractional step filters, in ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst. Nano-Bio Circuit Fabr. Syst., (3):1037–1040 (2010)Google Scholar
  19. 19.
    C.S. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23(9), 1050–1055 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    T.T. Hartley, C.F. Lorenzo, Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1/4), 201–233 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    I.S. Jesus, J.T. Machado, Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Kilbas, M. Rivero, L. Rodríguez-Germá, J. Trujillo, \(\alpha \)-Analytic solutions of some linear fractional differential equations with variable coefficients. Appl. Math. Comput. 187(1), 239–249 (2007)MathSciNetMATHGoogle Scholar
  23. 23.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, vol. 204 (Elsevier, Amsterdam, 2006)CrossRefMATHGoogle Scholar
  24. 24.
    P. Kiss, V. Prodanov, J. Glas, Complex low-pass filters. Analog Integr. Circuits Signal Process. 35(1), 9–23 (2003)CrossRefGoogle Scholar
  25. 25.
    Y. Ku, M. Drubin, Network synthesis using legendre and hermite polynomials. J. Franklin Inst. 273(2), 138–157 (1962)MathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Laoudias, C. Psychalinos, 1.5-V complex filters using current mirrors. IEEE Trans. Circuits Syst. II Express Briefs 58(9), 575–579 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Laoudias, C. Psychalinos, Complex Filters for Short Range Wireless Networks (Springer, New York, 2012)CrossRefGoogle Scholar
  28. 28.
    E. Lenzi, M. dos Santos, M. Lenzi, D. Vieira, L. da Silva, Solutions for a fractional diffusion equation: anomalous diffusion and adsorptiondesorption processes. J. King Saud Univ. Sci. 28(1), 8–11 (2015)Google Scholar
  29. 29.
    H. Li, Y. Luo, Y.Q. Chen, A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)CrossRefGoogle Scholar
  30. 30.
    J.S. Lim, D.C. Park, A modified chebyshev bandpass filter with attenuation poles in the stopband. IEEE Trans. Microw. Theory Tech. 45(6), 898–904 (1997)CrossRefGoogle Scholar
  31. 31.
    R.L. Magin, Fractional calculus in bioengineering (Begell House, Connecticut, 2006)Google Scholar
  32. 32.
    S.A. Mahmoud, A.H. Madian, A.M. Soliman, Low-voltage CMOS current feedback operational amplifier and its application. ETRI J. 29(2), 212–218 (2007)CrossRefGoogle Scholar
  33. 33.
    K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64(10), 3329–3339 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    C. Muto, A new extended frequency transformation for complex analog filter design. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83–A(6), 934–940 (2000)Google Scholar
  35. 35.
    W. Okrasiński, Ł. Płociniczak, A note on fractional Bessel equation and its asymptotics. Fract. Calc. Appl. Anal. 16(3), 559–572 (2013)MathSciNetMATHGoogle Scholar
  36. 36.
    K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier, Amsterdam, 1974)MATHGoogle Scholar
  37. 37.
    L.D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective (Springer, Berlin, 2001)Google Scholar
  38. 38.
    I. Petráš, Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15(2), 282–303 (2012). doi: 10.2478/s13540-012-0021-4 MathSciNetMATHGoogle Scholar
  39. 39.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications (Academic press, Cambridge, 1998)MATHGoogle Scholar
  40. 40.
    A. Radwan, A. Soliman, A. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fract. 40(5), 2317–2328 (2009)CrossRefMATHGoogle Scholar
  41. 41.
    A.G. Radwan, Resonance and quality factor of the \(RL_{\alpha }C_{\alpha }\) fractional circuit. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 377–385 (2013)CrossRefGoogle Scholar
  42. 42.
    A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators Design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2051–2063 (2008)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(02), 361–386 (2009)CrossRefGoogle Scholar
  44. 44.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, First order filter generalized to the fractional domain. J. Circuits Syst. Comput. 17(01), 55–66 (2008)CrossRefGoogle Scholar
  45. 45.
    J.F. Ritt, A factorization theory for functions \(\sum _{i=1}^na_ie^{\alpha _ix}\). Trans. Am. Math. Soc. 29(3), 584–584 (1927)MathSciNetGoogle Scholar
  46. 46.
    D. Saha, D. Mondal, S. Sen, Effect of initialization on a class of fractional order systems: experimental verification and dependence on nature of past history and system parameters. Circuits Syst. Signal Process. 32(4), 1501–1522 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. Samiotis, C. Psychalinos, Low-voltage complex filters using current feedback operational amplifiers. ISRN Electron. 1–7, 2013 (2013)Google Scholar
  48. 48.
    R. Schaumann, Design of Analog Filters (Oxford University Press, Oxford, 2001)Google Scholar
  49. 49.
    K. Shouno, Y. Ishibashi, Synthesis of a passive complex filter using transformers. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 1897–1903 (2003)MathSciNetCrossRefGoogle Scholar
  50. 50.
    D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, P. Ziubinski, Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)Google Scholar
  51. 51.
    V.E. Tarasov, Discrete model of dislocations in fractional nonlocal elasticity. J. King Saud Univ. Sci. 28(1), 33–36 (2015)CrossRefGoogle Scholar
  52. 52.
    C. Upathamkuekool, A. Jiraseree-amornkun, J. Mahattanakul, A low-voltage low-power complex active-RC filter employing single-stage opamp. in 2012 IEEE Int. Conf. Electron Devices Solid State Circuit, pp. 1–4. IEEE, Dec 2012Google Scholar
  53. 53.
    J. Valsa, P. Dvoák, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)Google Scholar
  54. 54.
    J. Vankka, Digital Synthesizers and Transmitters for Software Radio  (Springer,Verlag, 2005)Google Scholar
  55. 55.
    X. Zhang, X. Ni, M. Iwahashi, N. Kambayashi, Realization of universal active complex filter using CCIIs and CFCCIIs. Analog Integr. Circuits Signal Process. 20(2), 129–137 (1999)CrossRefGoogle Scholar
  56. 56.
    X. Zhang, Y. Shinada, A second-order active bandpass filter with complex coefficients and its applications to the hilbert transform. Electron. Commun. Jpn. (Part III Fundam. Electron. Sci) 79(6), 13–22 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Amr M. AbdelAty
    • 1
  • Ahmed Soltan
    • 2
  • Waleed A. Ahmed
    • 1
  • Ahmed G. Radwan
    • 3
    • 4
  1. 1.Engineering Mathematics and Physics Dept, Faculty of EngineeringFayoum UniversityFayoumEgypt
  2. 2.School of Electrical, Electronic and Computer EngineeringNewcastle UniversityNewcastleUnited Kingdom
  3. 3.Engineering Mathematics and Physics Dept, Faculty of EngineeringCairo UniversityGizaEgypt
  4. 4.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityGizaEgypt

Personalised recommendations