Skip to main content
Log in

On the Analysis and Design of Fractional-Order Chebyshev Complex Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces the concept of fractional-order complex Chebyshev filter. A fractional variation of Chebyshev differential equations is introduced based on Caputo fractional operator. The proposed equation is solved using fractional Taylor power series method. The condition for fractional polynomial solutions is obtained and the first four polynomials scaled using an appropriate scaling factor. The fractional-order complex Chebyshev low-pass filter based on the obtained fractional polynomials is developed. Two methods for obtaining the transfer functions of the complex filter are discussed. Circuit implementations are simulated using Advanced Design System (ADS) and compared with MATLAB numerical simulation of the obtained transfer functions to prove the validity of the two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Acharya, S. Das, I. Pan, S. Das, Extending the concept of analog Butterworth filter for fractional order systems. Sig. Process. 94(1), 409–420 (2014)

    Article  Google Scholar 

  2. A. Adhikary, S. Sen, K. Biswas, Practical realization of tunable fractional order parallel resonator and fractional order filters. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1142–1151 (2016)

    Article  MathSciNet  Google Scholar 

  3. M.A. Al-Bassam, On the existence of series solution of differential equations of generalized order. Port. Math. 29(1), 5–11 (1970)

    MathSciNet  MATH  Google Scholar 

  4. A.S. Ali, A.G. Radwan, A.M. Soliman, Fractional order butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)

    Article  Google Scholar 

  5. P.C. Biswal, Ordinary Differential Equations, 2nd edn. (PHI Learning Pvt. Ltd, Delhi, 2012)

    MATH  Google Scholar 

  6. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover Publications, 2000)

  7. M.S. Chavan, R.A. Agarwala, M.D. Uplane, Comparative study of Chebyshev I and Chebyshev II filter used for noise reduction in ECG signal. Sig. Process. 2(1), 1–17 (2008)

    MATH  Google Scholar 

  8. Y. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator. Sig. Process. 83(11), 2359–2365 (2003)

    Article  MATH  Google Scholar 

  9. J. Crols, M. Steyaert, Transceivers in the frequency domain. in ed by C. Wirel, Transceiver Des, pp 29–70. Springer, Boston (2003)

  10. E.C. de Oliveira, J.A. Tenreiro Machado, A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014(1940), 1–6 (2014)

    Article  MathSciNet  Google Scholar 

  11. B.K. Dutta, L.K. Arora, Approximate solution of inhomogeneous fractional differential equation. Adv. Nonlinear Anal. 1(4), 335–353 (2012)

    MathSciNet  MATH  Google Scholar 

  12. O.S. Fard, R. BeheshtAien, A note on fuzzy best approximation using Chebyshev’s polynomials. J. King Saud Univ. Sci. 23(2), 217–221 (2011)

    Article  Google Scholar 

  13. M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 383–396 (2007)

    Article  Google Scholar 

  14. G. Fedele, A. Ferrise, Periodic disturbance rejection for fractional-order dynamical systems. Fract. Calc. Appl. Anal. 18(3), 603–620 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Freeborn, B. Maundy, A.S. Elwakil, Approximated fractional order Chebyshev lowpass filters. Math. Probl. Eng. 2015(4), 1–7 (2015)

    Article  Google Scholar 

  16. T.J. Freeborn, Comparison of \((1+\alpha )\)fractional-order transfer functions to approximate lowpass butterworth magnitude responses. Circuits Syst. Signal Process. 35(6), 1983–2002 (2015)

    Article  MathSciNet  Google Scholar 

  17. T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circuits Syst. Signal Process. 35(6), 1973–1982 (2016)

    Article  MathSciNet  Google Scholar 

  18. T.J. Freeborn, B. Maundy, A. Elwakil, Towards the realization of fractional step filters, in ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst. Nano-Bio Circuit Fabr. Syst., (3):1037–1040 (2010)

  19. C.S. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23(9), 1050–1055 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. T.T. Hartley, C.F. Lorenzo, Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1/4), 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. I.S. Jesus, J.T. Machado, Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kilbas, M. Rivero, L. Rodríguez-Germá, J. Trujillo, \(\alpha \)-Analytic solutions of some linear fractional differential equations with variable coefficients. Appl. Math. Comput. 187(1), 239–249 (2007)

    MathSciNet  MATH  Google Scholar 

  23. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, vol. 204 (Elsevier, Amsterdam, 2006)

    Book  MATH  Google Scholar 

  24. P. Kiss, V. Prodanov, J. Glas, Complex low-pass filters. Analog Integr. Circuits Signal Process. 35(1), 9–23 (2003)

    Article  Google Scholar 

  25. Y. Ku, M. Drubin, Network synthesis using legendre and hermite polynomials. J. Franklin Inst. 273(2), 138–157 (1962)

    Article  MathSciNet  Google Scholar 

  26. C. Laoudias, C. Psychalinos, 1.5-V complex filters using current mirrors. IEEE Trans. Circuits Syst. II Express Briefs 58(9), 575–579 (2011)

    Article  Google Scholar 

  27. C. Laoudias, C. Psychalinos, Complex Filters for Short Range Wireless Networks (Springer, New York, 2012)

    Book  Google Scholar 

  28. E. Lenzi, M. dos Santos, M. Lenzi, D. Vieira, L. da Silva, Solutions for a fractional diffusion equation: anomalous diffusion and adsorptiondesorption processes. J. King Saud Univ. Sci. 28(1), 8–11 (2015)

    Google Scholar 

  29. H. Li, Y. Luo, Y.Q. Chen, A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)

    Article  Google Scholar 

  30. J.S. Lim, D.C. Park, A modified chebyshev bandpass filter with attenuation poles in the stopband. IEEE Trans. Microw. Theory Tech. 45(6), 898–904 (1997)

    Article  Google Scholar 

  31. R.L. Magin, Fractional calculus in bioengineering (Begell House, Connecticut, 2006)

    Google Scholar 

  32. S.A. Mahmoud, A.H. Madian, A.M. Soliman, Low-voltage CMOS current feedback operational amplifier and its application. ETRI J. 29(2), 212–218 (2007)

    Article  Google Scholar 

  33. K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64(10), 3329–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Muto, A new extended frequency transformation for complex analog filter design. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83–A(6), 934–940 (2000)

    Google Scholar 

  35. W. Okrasiński, Ł. Płociniczak, A note on fractional Bessel equation and its asymptotics. Fract. Calc. Appl. Anal. 16(3), 559–572 (2013)

    MathSciNet  MATH  Google Scholar 

  36. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier, Amsterdam, 1974)

    MATH  Google Scholar 

  37. L.D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective (Springer, Berlin, 2001)

    Google Scholar 

  38. I. Petráš, Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15(2), 282–303 (2012). doi:10.2478/s13540-012-0021-4

    MathSciNet  MATH  Google Scholar 

  39. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications (Academic press, Cambridge, 1998)

    MATH  Google Scholar 

  40. A. Radwan, A. Soliman, A. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fract. 40(5), 2317–2328 (2009)

    Article  MATH  Google Scholar 

  41. A.G. Radwan, Resonance and quality factor of the \(RL_{\alpha }C_{\alpha }\) fractional circuit. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 377–385 (2013)

    Article  Google Scholar 

  42. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators Design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2051–2063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(02), 361–386 (2009)

    Article  Google Scholar 

  44. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First order filter generalized to the fractional domain. J. Circuits Syst. Comput. 17(01), 55–66 (2008)

    Article  Google Scholar 

  45. J.F. Ritt, A factorization theory for functions \(\sum _{i=1}^na_ie^{\alpha _ix}\). Trans. Am. Math. Soc. 29(3), 584–584 (1927)

    MathSciNet  Google Scholar 

  46. D. Saha, D. Mondal, S. Sen, Effect of initialization on a class of fractional order systems: experimental verification and dependence on nature of past history and system parameters. Circuits Syst. Signal Process. 32(4), 1501–1522 (2012)

    Article  MathSciNet  Google Scholar 

  47. P. Samiotis, C. Psychalinos, Low-voltage complex filters using current feedback operational amplifiers. ISRN Electron. 1–7, 2013 (2013)

    Google Scholar 

  48. R. Schaumann, Design of Analog Filters (Oxford University Press, Oxford, 2001)

    Google Scholar 

  49. K. Shouno, Y. Ishibashi, Synthesis of a passive complex filter using transformers. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 1897–1903 (2003)

    Article  MathSciNet  Google Scholar 

  50. D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, P. Ziubinski, Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  51. V.E. Tarasov, Discrete model of dislocations in fractional nonlocal elasticity. J. King Saud Univ. Sci. 28(1), 33–36 (2015)

    Article  Google Scholar 

  52. C. Upathamkuekool, A. Jiraseree-amornkun, J. Mahattanakul, A low-voltage low-power complex active-RC filter employing single-stage opamp. in 2012 IEEE Int. Conf. Electron Devices Solid State Circuit, pp. 1–4. IEEE, Dec 2012

  53. J. Valsa, P. Dvoák, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  54. J. Vankka, Digital Synthesizers and Transmitters for Software Radio  (Springer,Verlag, 2005)

  55. X. Zhang, X. Ni, M. Iwahashi, N. Kambayashi, Realization of universal active complex filter using CCIIs and CFCCIIs. Analog Integr. Circuits Signal Process. 20(2), 129–137 (1999)

    Article  Google Scholar 

  56. X. Zhang, Y. Shinada, A second-order active bandpass filter with complex coefficients and its applications to the hilbert transform. Electron. Commun. Jpn. (Part III Fundam. Electron. Sci) 79(6), 13–22 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr M. AbdelAty.

Appendix: Valsa CPE

Appendix: Valsa CPE

The calculation of the elements values used in the Valsa CPE approximation starts with the given data which are the start frequency \(\omega _d=\frac{1}{R_1C_1}\), the phase angle \(\phi _{av}\), the allowable phase variation \(\varDelta \phi \), the number of sections m and the impedance value at \(\omega =1\) (\(D_p\)). The end frequency is calculated as:

$$\begin{aligned} \omega _h=\frac{\omega _d}{(ab)^{m}}, \end{aligned}$$
(43)

where ab is calculated from the allowable ripple as:

$$\begin{aligned} ab\cong \frac{0.24}{1+\varDelta \phi }. \end{aligned}$$
(44)

a can be calculated as:

$$\begin{aligned} \alpha =\phi /90,\qquad a=\alpha \log (ab). \end{aligned}$$
(45)

The values of the resistors and capacitances in section are:

$$\begin{aligned} R_k=R_1a^{k-1}, \qquad k=1,2,\dots m, \end{aligned}$$
(46a)
$$\begin{aligned} C_k=C_1b^{k-1}, \qquad k=1,2,\dots m, \end{aligned}$$
(46b)

and the correction elements:

$$\begin{aligned} R_p=R_1\frac{1-a}{a},\qquad C_p=C-1\frac{b^m}{1-p}. \end{aligned}$$
(47)

The input admittance can be calculated as:

$$\begin{aligned} Y(j\omega _{av})=\frac{1}{R_p}+j\omega _{av}C_p+\sum \limits _{k=0}^{m}\frac{j\omega _{av}C_k}{1+j\omega _{av}R_kC_k}, \end{aligned}$$
(48)

where

$$\begin{aligned} \omega _{av}=\left( \frac{a}{b}\right) ^{0.25}z_k,\qquad z_k=\frac{\omega _d}{(ab)^{k-1}},\qquad k=\lceil m\rceil . \end{aligned}$$
(49)

The actual impedance value at \(\omega =1\) is calculated as:

$$\begin{aligned} D=\frac{1}{|Y(j\omega _{av})|\omega _{av}^\alpha }. \end{aligned}$$
(50)

In order to obtain the required value \(D_p\), all the resistances must be multiplied by \(D_p/D\) and all the capacitances must be divided by the same ratio.

Throughout this work, the fractional capacitance is set to \(C=10\,\hbox {nF}\cdot \hbox {s}^{\alpha -1}\), the number of branches is set to \(m=7\) and the allowable phase variation is set to \(\varDelta \phi =1^\circ \). The list of values used to implement fractional capacitors of order 0.9 and 0.7 are summarized in Table 2. The phase and capacitance response of the used capacitors are depicted in Fig. 15. It can be seen that the phase approximation is below \(1^\circ \) of variation and the capacitance error is below \(2\%\) within the frequency range of 100 Hz to 1 MHz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelAty, A.M., Soltan, A., Ahmed, W.A. et al. On the Analysis and Design of Fractional-Order Chebyshev Complex Filter. Circuits Syst Signal Process 37, 915–938 (2018). https://doi.org/10.1007/s00034-017-0570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0570-1

Keywords

Navigation