Skip to main content
Log in

Low-Power, Low-Area Multi-level 2-D Discrete Wavelet Transform Architecture

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces an efficient, low-power, low-area multi-level 2-D discrete Haar wavelet transform (2-D DHWT) architecture. The proposed architecture consists of four add/subtract elements, register bank, three multiplexers and a buffer memory. All or fractions of the N-stage register are used to perform row–column image transposition for every 2-D DHWT decomposition level. A fixed size block memory of \(\frac{{{\varvec{N}}}}{{{\varvec{2}}}}\times \frac{{{\varvec{N}}}}{{{\varvec{2}}}}\)-sample is used to store low–low frequency band to perform multi-level 2-D DHWT decomposition, except for the first level where no block memory is used. For synthesis results, the proposed architecture outperforms similar architectures in hardware usage, power consumption and speed. Also, it is found that the power delay product of the proposed architecture is less than 1 \((\hbox {mW} \times \upmu \hbox {s})\) compared with up to 1.9 \((\hbox {mW} \times \upmu \hbox {s})\) for cascaded architecture. Furthermore, an up to 209 MHz processing speed is achieved which enables a three-level 2-D DHWT decomposition of a \(256\times 256\)-pixel image to be performed within 0.4 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ahmad, B. Krill, A. Amira, H. Rabah, 3D Haar wavelet transform with dynamic partial reconfiguration for 3D medical image compression, in IEEE Biomedical Circuits and Systems Conference (BioCAS 2009), pp. 137–140 (2009)

  2. A. Ahmad, A. Amira, P. Nicholl, B. Krill, Dynamic partial reconfiguration of 2-D Haar wavelet transform (HWT) for face recognition systems, in IEEE 15th International Symposium on Consumer Electronics (ISCE), 14–17 June 2011, pp. 9–13 (2011)

  3. A. Ahmad, B. Krill, A. Amira, H. Rabah, Efficient architectures for 3D HWT using dynamic partial reconfiguration. J. Syst. Archit. 56(8), 305–316 (2010)

    Article  Google Scholar 

  4. A. Ahmad, A. Amira, P. Nicholl, B. Krill, FPGA-based IP cores implementation for face recognition using dynamic partial reconfiguration. J. Real-Time Image Process. 8(3), 327–340 (2013). doi:10.1007/s11554-011-0221-x

    Article  Google Scholar 

  5. S. Al-Azawi, Efficient architectures for multidimensional discrete transforms in image and video processing applications. PhD Thesis, Newcastle University (2013)

  6. S. Al-Azawi, S. Boussakta, A. Yakovlev, High precision and low power DCT architectures for image compression applications, in IET Conference on Image Processing (IPR), 3–4 July 2012, pp. 1–6 (2012)

  7. S. Al-Azawi, S. Boussakta, A. Yakovlev, Image compression algorithms using intensity based adaptive quantization coding. Am. J. Eng. Appl. Sci. 4, issue 4(4), 504–512 (2012). doi:10.3844/ajeassp.2011.504.512

    Google Scholar 

  8. S. Al-Azawi, A. Abedelkareem, Low complexity multilevel 2-D DHWT architecture. The second engineering scientific conference-college of engineering, Diyala University. Diyala J. Eng. Sci. 8(4), 493–500 (2015)

    Google Scholar 

  9. J. Altermann, E. Costa, S. Almeida, High performance Haar Wavelet transform architecture, in 20th European Conference on Circuit Theory and Design (ECCTD), 29–31 Aug. 2011, pp. 596–599 (2011)

  10. Z. Chengjun, C. Wang, M.O. Ahmad, A VLSI architecture for a high-speed computation of the 1D discrete wavelet transform. IEEE Int. Symp. Circuits Syst. (ISCAS 2005) 1462, 1461–1464 (2005)

    Article  Google Scholar 

  11. I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), x1–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Daubechies: Ten lectures on wavelets. CBMS, SIAM, p. 61 (1995)

  13. K. Hasan, U.K. Ngah, M. Salleh, Hierarchical hardware architecture of discrete wavelet transform for image compression. Int. J. Comput. Sci. Inf. Technol. Res. 2(4), 232–241 (2014)

    Google Scholar 

  14. J. Kidav, P.A. Ajeesh, D. Vasudev, V.S. Deepak, A. Menon, A VLSI architecture for wavelet based image compression, in Advances in Computing and Information Technology, vol. 178, ed. by N. Meghanathan, D. Nagamalai, N. Chaki (Springer, Heidelberg, 2013), pp. 603–614

    Chapter  Google Scholar 

  15. K. Liu, VLSI computing architectures for Haar transform. Electron. Lett. 26(23), 1962–1963 (1990). doi:10.1049/el:19901269

    Article  Google Scholar 

  16. A. Reddy, A. Dhar, A discrete time continuous level VLSI architecture in current mode to implement Discrete Haar Wavelet Transform. Analog Integr. Circuits Signal Process. 73(1), 353–362 (2012). doi:10.1007/s10470-012-9910-z

    Article  Google Scholar 

  17. H. Shahadi, R. Jidin, W.H. Way, High performance FPGA architecture for dual mode processor of integer Haar lifting-based wavelet transform. Int. Rev. Comput. Softw. 8(9), 2058–2067 (2013)

    Google Scholar 

  18. M. Vishwanath, R.M. Owens, M.J. Irwin, VLSI architectures for the discrete wavelet transform. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 42(5), 305–316 (1995). doi:10.1109/82.386170

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Diyala, College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Al-Azawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Azawi, S. Low-Power, Low-Area Multi-level 2-D Discrete Wavelet Transform Architecture. Circuits Syst Signal Process 37, 444–458 (2018). https://doi.org/10.1007/s00034-017-0553-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0553-2

Keywords

Navigation