Skip to main content
Log in

High-Performance 1-D and 2-D Inverse DWT 5/3 Filter Architectures for Efficient Hardware Implementation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents high-performance and memory-efficient hardware architectures for one-dimensional (1-D) and two-dimensional (2-D) inverse discrete wavelet transform (DWT) 5/3 filters. The proposed 1-D filter architecture requires 33% less memory resources and 17% less logic resources than the best state-of-the-art solutions. The proposed 1-D filter architecture has 100% hardware utilization, which is defined as the ratio of the actual computation time to the total processing time, both expressed in numbers of clock cycles. It allows a 7% higher operational frequency and simultaneously has the lowest total power dissipation in comparison with the best state-of-the-art solutions. The proposed 2-D inverse DWT 5/3 architecture, based on the proposed 1-D inverse DWT filter design, provides medium total computing time and output latency, but outperforms the best state-of-the-art solutions for at least 20% in terms of required memory capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. T. Acharya, C. Chakrabarti, A survey on lifting-based discrete wavelet transform architectures. J. VLSI Signal Process. 42(3), 321–339 (2006)

    Article  MATH  Google Scholar 

  2. T. Acharya, P.S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  3. M.D. Adams, F. Kossentini, Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans. Image Process. 9(6), 1010–1024 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002)

    Article  Google Scholar 

  5. S.M. Aziz, D.M. Pham, Efficient parallel architecture for multi-level forward discrete wavelet transform processors. Comput. Electr. Eng. 38(5), 1325–1335 (2012)

    Article  Google Scholar 

  6. S. Barua, J.E. Carletta, K.A. Kotteri, A.E. Bell, An efficient architecture for lifting-based two-dimensional discrete wavelet transform. Integr. VLSI J. 38(3), 341–352 (2005)

    Article  Google Scholar 

  7. C. Chakrabarti, M. Vishwanath, Efficient realizations of the discrete and continuous wavelet transforms: from single chip implementations to mappings on SIMD array computers. IEEE Trans. Signal Process. 43(3), 759–771 (1995)

    Article  Google Scholar 

  8. W.H. Chang, Y.S. Lee, W.S. Peng, C.Y. Lee, A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 4, pp. 330–333

  9. C. Cheng, K.K. Parhi, High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 56(1), 393–403 (2008)

    Article  MathSciNet  Google Scholar 

  10. A.D. Darji, S.S. Kushwah, S.N. Merchant, A.N. Chandorkar, High-performance hardware architectures for multi-level lifting-based discrete wavelet transform. Eurasip J. Image Video Process. 47, 1–19 (2014)

    Google Scholar 

  11. G. Dillen, B. Georis, J.D. Legat, O. Cantineau, Combined line-based architecture for the 5–3 and 9–7 wavelet transform of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 13(9), 944–950 (2003)

    Article  Google Scholar 

  12. M. Ghantous, M. Bayoumi, P\(^{2}\)E-DWT: a parallel and pipelined efficient VLSI architecture of 2-D discrete wavelet transform. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Rio de Janeiro, Brazil, 2011), pp. 941–944

  13. C.-H. Hsia, J.-S. Chiang, J.-M. Guo, Memory-efficient hardware architecture of 2-D dual-mode lifting-based discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 23(4), 671–683 (2012)

    Article  Google Scholar 

  14. C.T. Huang, P.C. Tseng, L.G. Chen, Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004)

    Article  MathSciNet  Google Scholar 

  15. J.M. Jou, Y.H. Shiau, C.C. Liu, Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 529–529

  16. X. Lan, N. Zheng, Y. Liu, Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Consum. Electr. 51(2), 379–385 (2005)

    Article  Google Scholar 

  17. D. Le Gall, A. Tabatabai, Subband coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In Proceedings of International Conference Acoustics, Speech, Signal Processing (ICASSP) (New York, NY, 1988), vol. 2, pp. 761–765

  18. C.J. Lian, K.F. Chen, H.H. Chen, L.G. Chen, Lifting based discrete wavelet transform architecture for JPEG2000. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 445–448

  19. H. Liao, M.K. Mandal, B.F. Cockburn, Efficient implementation of lifting-based discrete wavelet transform. Electron. Lett. 38(18), 1010–1012 (2002)

    Article  Google Scholar 

  20. H. Liao, M.K. Mandal, B.F. Cockburn, Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52(5), 1315–1326 (2004)

    Article  MathSciNet  Google Scholar 

  21. L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, H. Chen, A VLSI architecture of JPEG2000 encoder. IEEE J. Solid State Circuits 39(11), 2032–2040 (2004)

    Article  Google Scholar 

  22. C.C. Liu, Y.H. Shiau, J.M. Jou, Design and implementation of a progressive image coding chip based on the lifted wavelet transform. In Proceedings of the 11th VLSI Design/CAD Symposium (Taiwan, 2000) pp. 49–52

  23. S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  24. S.G. Mallat, Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Article  Google Scholar 

  25. F. Marino, Efficient high-speed/low-power pipelined architecture for the direct 2-D discrete wavelet transform. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1476–1491 (2000)

    Article  Google Scholar 

  26. M. Martina, G. Masera, G. Piccinini, M. Zamboni, Novel JPEG 2000 compliant DWT and IWT VLSI implementations. J. VLSI Signal Process. 34(2), 137–153 (2003)

    Article  MATH  Google Scholar 

  27. B.K. Mohanty, P.K. Meher, Memory efficient modular VLSI architecture for highthroughput and low-latency implementation of multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5), 2072–2084 (2011)

    Article  MathSciNet  Google Scholar 

  28. K.K. Parhi, T. Nishitani, VLSI architectures for discrete wavelet transforms. IEEE Trans. Very Large Scale Integr. Syst. 1(2), 191–202 (1993)

    Article  Google Scholar 

  29. G. Strang, T.Q. Nquyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Cambridge, 1996)

    MATH  Google Scholar 

  30. B.N. Usha, A. Chilambuchelvan, Efficient VLSI architecture for discrete wavelet transform. IJCSI 1(1), 1694–0814 (2011)

    Google Scholar 

  31. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  32. M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  33. M. Vishwanath, R.M. Owens, M.J. Irwin, VLSI architectures for the discrete wavelet transform. IEEE Trans. Circuits Syst. II 42(5), 305–316 (1995)

    Article  MATH  Google Scholar 

  34. P.C. Wu, L.G. Chen, An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(4), 536–545 (2001)

    Article  Google Scholar 

  35. B.F. Wu, C.F. Lin, A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1615–1628 (2005)

    Article  Google Scholar 

  36. C.-Y. Xiong, J.-W. Tian, J. Liu, Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme. IEEE Trans. Image Process. 16(3), 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  37. N.D. Zervas, G.P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, C.E. Goutis, Evaluation of design alternatives for the 2-D-discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1246–1262 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Ministry of Education, Science and Technology Development of Republic of Serbia under Grant No. TR32039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Savić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savić, G., Prokin, M., Rajović, V. et al. High-Performance 1-D and 2-D Inverse DWT 5/3 Filter Architectures for Efficient Hardware Implementation. Circuits Syst Signal Process 36, 3674–3701 (2017). https://doi.org/10.1007/s00034-016-0477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0477-2

Keywords

Navigation