Skip to main content
Log in

Sparse Blind Speech Deconvolution with Dynamic Range Regularization and Indicator Function

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Blind deconvolution is an ill-posed problem. To solve such a problem, prior information, such as, the sparseness of the source (i.e., input) signal or channel impulse responses, is usually adopted. In speech deconvolution, the source signal is not naturally sparse. However, the direct impulse and early reflections of the impulse responses of an acoustic system can be considered as sparse. In this paper, we exploit the channel sparsity and present an algorithm for speech deconvolution, where the dynamic range of the convolutive speech is also used as the prior information. In this algorithm, the estimation of the impulse response and the source signal is achieved by alternating between two steps, namely, the \(\ell _1\) regularized least squares optimization and a proximal operation. As demonstrated in our experiments, the proposed method provides superior performance for deconvolution of a sparse acoustic system, as compared with two state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Adiga, C.S. Seelamantula, An alternating \(\ell _p-\ell _2\) projections algorithm (ALPA) for speech modeling using sparsity constraints, in Proceedings of IEEE International Conference on Digital Signal Processing (DSP) (2014), pp. 291–296

  2. A. Ahmed, B. Recht, J. Romberg, Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alinaghi, P.J. Jackson, Q. Liu, W. Wang, Joint mixing vector and binaural model based stereo source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(9), 1434–1448 (2014)

    Article  Google Scholar 

  4. J.B. Allen, D.A. Berkley, Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

  5. A. Benichoux, E. Vincent, R. Gribonval, A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013), pp. 26–31

  6. J. Bolte, P.L. Combettes, J.C. Pesquet, Alternating proximal algorithm for blind image recovery, in: Proceedings of IEEE International Conference on Image Processing (ICIP) (2010), pp. 1673–1676

  7. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  8. P. Campisi, K. Egiazarian, Blind Image Deconvolution: Theory and Applications (CRC press, Boca Raton, 2007)

    Book  Google Scholar 

  9. R. Chai, G. Naik, T.N. Nguyen, S. Ling, Y. Tran, A. Craig, H. Nguyen, Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. J. Biomed. Health Inform. (2016). doi:10.1109/JBHI.2016.2532354

    Google Scholar 

  10. Y. Chi, Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. IEEE J. Sel. Top. Signal Process. 10(4), 782–794 (2016)

    Article  Google Scholar 

  11. S. Choudhary, U. Mitra, Fundamental limits of blind deconvolution part I: ambiguity kernel. ArXiv preprint arXiv:1411.3810 (2014)

  12. S. Choudhary, U. Mitra, Fundamental limits of blind deconvolution part II: sparsity-ambiguity trade-offs. ArXiv preprint arXiv:1503.03184 (2015)

  13. E. Chouzenoux, J.C. Pesquet, A. Repetti, Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Chouzenoux, J.C. Pesquet, A. Repetti, A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.L. Combettes, J.C. Pesquet, Proximal splitting methods in signal processing (2009), pp. 1–25. http://arxiv.org/abs/0912.3522

  16. D.L. Donoho, On minimum entropy deconvolution. in Applied Time-Series Analysis II (Academic Press, 1981), pp. 569–609

  17. M. Grant, S. Boyd, M. Grant, S. Boyd, V. Blondel, S. Boyd, H. Kimura, CVX: Matlab software for disciplined convex programming, version 2.1. (2014). http://cvxr.com/cvx/

  18. Y. Guo, S. Huang, Y. Li, G.R. Naik, Edge effect elimination in single-mixture blind source separation. Circuits Syst. Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  19. Y. Guo, G.R. Naik, H. Nguyen, Single channel blind source separation based local mean decomposition for biomedical applications, in Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6812–6815 (2013)

  20. S. Haykin, Blind Deconvolution (Prentice Hall, Englewood Cliffs, 1994)

    Google Scholar 

  21. K.F. Kaaresen, Deconvolution of sparse spike trains by iterated window maximization. IEEE Trans. Signal Process. 45(5), 1173–1183 (1997)

    Article  Google Scholar 

  22. K.F. Kaaresen, T. Taxt, Multichannel blind deconvolution of seismic signals. Geophysics 63(6), 2093–2107 (1998)

    Article  Google Scholar 

  23. C. Kelley, Iterative methods for linear and nonlinear equations. SIAM Front. Appl. Math. 16, 11–30 (1995)

  24. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale \(\ell _1\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  25. D. Krishnan, T. Tay, R. Fergus, Blind deconvolution using a normalized sparsity measure, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240

  26. X. Li, S. Ling, T. Strohmer, K. Wei, Rapid, robust, and reliable blind deconvolution via nonconvex optimization. ArXiv preprint arXiv:1606.04933 (2016)

  27. H. Liu, S. Liu, T. Huang, Z. Zhang, Y. Hu, T. Zhang, Infrared spectrum blind deconvolution algorithm via learned dictionaries and sparse representation. Appl. Opt. 55(10), 2813–2818 (2016)

    Article  Google Scholar 

  28. Y. Luo, W. Wang, J.A. Chambers, S. Lambotharan, I. Proudler, Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques. IEEE Trans. Signal Process. 54(6), 2198–2212 (2006)

    Article  Google Scholar 

  29. G. Naik, A. Al-Timemy, H. Nguyen, Transradial amputee gesture classification using an optimal number of sEMG sensors: an approach using ICA clustering. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 837–846 (2016)

    Article  Google Scholar 

  30. G. Naik, S. Selvan, H. Nguyen, Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(7), 734–743 (2016)

    Article  Google Scholar 

  31. G.R. Naik, Enhancement of the ill-conditioned original recordings using novel ICA technique. Int. J. Electron. 99(7), 899–906 (2012)

    Article  Google Scholar 

  32. G.R. Naik, D.K. Kumar, Estimation of independent and dependent components of non-invasive EMG using fast ICA: validation in recognising complex gestures. Comput. Methods Biomech. Biomed. Eng. 14(12), 1105–1111 (2011)

    Article  Google Scholar 

  33. N. Parikh, S. Boyd, Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  34. G. Pendharkar, G.R. Naik, H.T. Nguyen, Using blind source separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomed. Signal Process. Control 13, 41–49 (2014)

    Article  Google Scholar 

  35. A. Repetti, E. Chouzenoux, J.C. Pesquet, A preconditioned forward–backward approach with application to large-scale nonconvex spectral unmixing problems, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 1498–1502

  36. A. Repetti, M.Q. Pham, L. Duval, E. Chouzenoux, J.C. Pesquet, Euclid in a taxicab: sparse blind deconvolution with smoothed regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015)

    Article  Google Scholar 

  37. I. Selesnick, Sparse deconvolution (an MM algorithm). http://cnx.org/content/m44991/ (2012)

  38. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

  39. E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  40. L. Wang, Y. Chi, Blind deconvolution from multiple sparse inputs. IEEE Signal Process. Lett. 23(10), 1384–1388 (2016)

    Article  MathSciNet  Google Scholar 

  41. W. Wang, M.G. Jafari, S. Sanei, J.A. Chambers, Blind separation of convolutive mixtures of cyclostationary signals. Int. J. Adapt. Control Signal Process. 18(3), 279–298 (2004)

    Article  MATH  Google Scholar 

  42. W. Wang, S. Sanei, J.A. Chambers, Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources. IEEE Trans. Signal Process. 53(5), 1654–1669 (2005)

    Article  MathSciNet  Google Scholar 

  43. T. Xu, W. Wang, W. Dai, Sparse coding with adaptive dictionary learning for underdetermined blind speech separation. Speech Commun. 55(3), 432–450 (2013)

    Article  Google Scholar 

  44. Y. Yu, W. Wang, P. Han, Localization based stereo speech source separation using probabilistic time-frequency masking and deep neural networks. EURASIP J. Audio Speech Music Process. 2016(1), 1–18 (2016)

    Article  Google Scholar 

  45. H. Zhang, D. Wipf, Y. Zhang, Multi-observation blind deconvolution with an adaptive sparse prior. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1628–1643 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was conducted when J. Guan was visiting the University of Surrey, and supported in part by International Exchange and Cooperation Foundation of Shenzhen City, China (No. GJHZ20150312114149569). W. Wang was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant Number EP/K014307 and the MOD University Defence Research Collaboration in Signal Processing. The authors thank the anonymous reviewers for their helpful suggestions and Dr. Mark Barnard for proofreading the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Wang, X., Wang, W. et al. Sparse Blind Speech Deconvolution with Dynamic Range Regularization and Indicator Function. Circuits Syst Signal Process 36, 4145–4160 (2017). https://doi.org/10.1007/s00034-017-0505-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0505-x

Keywords

Navigation