Skip to main content
Log in

A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article considers image deblurring in the presence of impulse noise and proposes a new multi-parameter regularization model for image deblurring based on total variation (TV) and wavelet frame (WF), along with an efficient and effective solving algorithm for this restoring model. On the one hand, it is well known that the TV regularization-based Rudin–Osher–Fatemi model is very effective in preserving sharp edges and object boundaries which are generally the most important features to recover. On the other hand, WF-based approaches for image restoration have proven to be very successful in adaptively exploiting the regularity of natural images. By combining TV regularization and WF regularization, a novel multi-parameter regularization model is proposed for deblurring images in the presence of impulse noise. Numerically, the alternative direction method of multiplier (ADMM) with an adaptive scheme for choosing regularization parameters is provided and applied to this multi-parameter regularization model. Moreover, the convergence analysis of the ADMM is shown in the “Appendix.” Furthermore, numerical experiments involving images corrupted by various types of blurring kernels and different levels of noises indicate that the proposed model and algorithm outperform several state-of-the-art approaches in terms of the restoration quality, especially the ability to mitigate staircasing effects while preserving important features in images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Bar, A. Brook, N. Sochen, N. Kiryati, Deblurring of color images corrupted by impulsive noise. IEEE Trans. Image Process. 16(4), 1101–1111 (2007). doi:10.1109/TIP.2007.891805

    Article  MathSciNet  Google Scholar 

  2. L. Bar, N. Sochen, N. Kiryati, Image deblurring in the presence of salt-and-pepper noise, in Scale Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science, ed. R. Kimmel, N. Sochen, J. Weickert (eds.), vol. 3459 (Springer, Berlin, 2005), pp. 107–118. doi:10.1007/11408031_10

  3. L. Bar, N. Sochen, N. Kiryati, Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70(3), 279–298 (2006). doi:10.1007/s11263-006-6468-1

    Article  MATH  Google Scholar 

  4. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). doi:10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Bredies, T. Pock, B. Wirth, A convex, lower semicontinuous approximation of Euler’s elastica energy. SIAM J. Math. Anal. 47(1), 566–613 (2015). doi:10.1137/130939493

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Brownrigg, The weighted median filter. Commun. ACM 27(8), 807–818 (1984). doi:10.1145/358198.358222

    Article  Google Scholar 

  7. J. Cai, R. Chan, M. Niklova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008). doi:10.3934/ipi.2008.2.187

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cai, R. Chan, M. Nikolova, Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2010). doi:10.1007/s10851-009-0169-7

    Article  MathSciNet  Google Scholar 

  9. J. Cai, R. Chan, Z. Shen, Simultaneous cartoon and texture inpainting. Inverse Probl. Imaging 4(3), 379–395 (2010). doi:10.3934/ipi.2010.4.379

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Cai, B. Dong, S. Osher, Z. Shen, Image restoration: total variation, wavelet frames, and beyond. J. Am. Math. Soc. 25, 1033–1089 (2012). doi:10.1090/S0894-0347-2012-00740-1

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Cai, Z. Shen, Framelet based deconvolution. J. Comput. Math. 28(3), 289–308 (2010). doi:10.4208/jcm.1001-m1002

    MathSciNet  MATH  Google Scholar 

  12. A. Chai, Z. Shen, Deconvolution: a wavelet frame approach. Numer. Math. 106(4), 529–587 (2007). doi:10.1007/s00211-007-0075-0

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Chan, Y. Dong, M. Hintermüller, An efficient two-phase L1-TV method for restoring blurred images with impulse noise. IEEE Trans. Image Process. 19(7), 1731–1739 (2010). doi:10.1109/TIP.2010.2045148

    Article  MathSciNet  Google Scholar 

  14. R. Chan, M. Tao, X. Yuan, Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013). doi:10.1137/110860185

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Chan, S. Esedoglu, Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005). doi:10.1137/040604297

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Chen, H. Wu, Space variant median filters for the restoration of impulse noise corrupted images. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 48(8), 784–789 (2001). doi:10.1109/82.959870

    Article  MATH  Google Scholar 

  17. C. Clason, B. Jin, K. Kunisch, A duality-based splitting method for L1-TV image restoration with automatic regularization parameter choice. SIAM J. Sci. Comput. 32(3), 1485–1505 (2010). doi:10.1137/090768217

    Article  MATH  Google Scholar 

  18. I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harm. Anal. 14(1), 1–46 (2003). doi:10.1016/S1063-5203(02)00511-0

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Dobson, F. Santosa, Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56(4), 1181–1198 (1996). doi:10.1137/S003613999427560X

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Dong, H. Ji, J. Li, Z. Shen, Y. Xu, Wavelet frame based blind image inpainting. Appl. Comput. Harm. Anal. 32(2), 268–279 (2012). doi:10.1016/j.acha.2011.06.001

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Dong, Z. Shen, MRA based wavelet frames and applications, in IAS Lecture Notes Series, Summer Program on the Mathematics of Image Processing, Park City Mathematics Institute, vol 19, pp. 7–158 (2010)

  22. Y. Dong, M. Hintermller, M. Neri, An efficient primal-dual method for L1TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009). doi:10.1137/090758490

    Article  MathSciNet  Google Scholar 

  23. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, New York, 2010). doi:10.1007/978-1-4419-7011-4

    Book  MATH  Google Scholar 

  24. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006). doi:10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  25. E. Esser, Applications of Lagrangianbased alternating direction methods and connections to split Bregman. Technical Report, UCLA C.A.M. Report, 09-31 (2009)

  26. S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser Basel (2013). doi:10.1007/978-0-8176-4948-7

  27. H. Fu, M. Ng, M. Nikolova, J. Barlow, Efficient minimization methods of mixed l2–l1 and l1–l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006). doi:10.1137/040615079

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). doi:10.1016/0898-1221(76)90003-1

    Article  MATH  Google Scholar 

  29. R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer, New York, 1984). doi:10.1007/978-3-662-12613-4

    Book  MATH  Google Scholar 

  30. R. Glowinski, A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Rev. Francaise d’Automat. Inf. Recherche Opérationelle, 9 (R2), 41–76 (1975). http://eudml.org/doc/193269

  31. R. Glowinski, P.L. Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, chap. Augmented Lagrangian Methods for the Solution of Variational Problems, pp. 45–121. SIAM (1989). doi:10.1137/1.9781611970838.ch3

  32. Z. Gong, Z. Shen, K. Toh, Image restoration with mixed or unknown noises. Multiscale Model. Simul. 12(2), 458–487 (2014). doi:10.1137/130904533

    Article  MATH  Google Scholar 

  33. Y. Huang, D. Lu, T. Zeng, Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), 2856–2873 (2013). doi:10.1137/120898693

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Hwang, R. Haddad, Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4(4), 499–502 (1995). doi:10.1109/83.370679

    Article  Google Scholar 

  35. K. Ito, B. Jin, T. Takeuchi, A regularization parameter for nonsmooth Tikhonov regularization. SIAM J. Sci. Comput. 33(3), 1415–1438 (2011). doi:10.1137/100790756

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Jia, H. Zhao, W. Zhao, Convergence analysis of the Bregman method for the variational model of image denoising. Appl. Comput. Harm. Anal. 27(3), 367–379 (2009). doi:10.1016/j.acha.2009.05.002

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Ko, Y. Lee, Center weighted median filters and their applications to image enhancements. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991). doi:10.1109/31.83870

    Article  Google Scholar 

  38. Y. Li, L. Shen, D. Dai, B. Suter, Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise. IEEE Trans. Image Process. 20(7), 1822–1837 (2011). doi:10.1109/TIP.2010.2103950

    Article  MathSciNet  Google Scholar 

  39. L. Ma, J. Yu, T. Zeng, Sparse representation prior and total variation-based image deblurring under impulse noise. SIAM J. Imaging Sci. 6(4), 2258–2284 (2013). doi:10.1137/120866452

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, in IEEE International Conference on Computer Vision (ICCV), pp. 2272–2279 (2009). doi:10.1109/ICCV.2009.5459452

  41. M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000). doi:10.1137/S0036139997327794

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002). doi:10.1137/S0036142901389165

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Nikolova, A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004). doi:10.1023/B:JMIV.0000011326.88682.e5

    Article  MathSciNet  Google Scholar 

  44. P. Ochs, Y. Chen, T. Brox, T. Pock, Ipiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014). doi:10.1137/130942954

    Article  MathSciNet  MATH  Google Scholar 

  45. D. O’Connor, L. Vandenberghe, Primal-dual decomposition by operator splitting and applications to image deblurring. SIAM J. Imaging Sci 7(3), 1724–1754 (2014). doi:10.1137/13094671X

  46. G. Pok, J. Liu, A. Nair, Selective removal of impulse noise based on homogeneity level information. IEEE Trans. Image Process. 12(1), 85–92 (2003). doi:10.1109/TIP.2002.804278

    Article  Google Scholar 

  47. W. Pratt, Median filtering Technical Report (Image Processing Institute, University of Southern California, Los Angeles, 1975)

  48. A. Ron, Z. Shen, Affine systems in L2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997). doi:10.1007/BF02648888

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Sutour, C. Deledalle, J. Aujol, Adaptive regularization of the NL-means: application to image and video denoising. IEEE Trans. Image Process. 23(8), 3506–3521 (2014). doi:10.1109/TIP.2014.2329448

    Article  MathSciNet  Google Scholar 

  50. X. Tai, C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, in Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, vol. 5567 (Springer, Berlin, 2009), pp. 502–513. doi:10.1007/978-3-642-02256-2_42

  51. C. Wu, J. Zhang, X. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011). doi:10.3934/ipi.2011.5.237

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. Xiao, T. Zeng, J. Yu, M. Ng, Restoration of images corrupted by mixed Gaussian-impulse noise via l1–l0 minimization. Pattern Recognit. 44(8), 1708–1720 (2011). doi:10.1016/j.patcog.2011.02.002

    Article  MATH  Google Scholar 

  53. M. Yan, Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013). doi:10.1137/12087178X

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Yang, Y. Zhang, W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009). doi:10.1137/080732894

    Article  MathSciNet  MATH  Google Scholar 

  55. Z. Yang, M. Jacob, Nonlocal regularization of inverse problems: a unified variational framework. IEEE Trans. Image Process. 22(8), 3192–3203 (2013). doi:10.1109/TIP.2012.2216278

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers and the editor for their constructive comments and suggestions, which have improved greatly the development and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Jiang.

Appendix: Convergence Analysis

Appendix: Convergence Analysis

In this section, we will give the global convergence analysis of the proposed ADMM algorithm for IR, i.e., Algorithm 1, in Theorem 1.

Before we show Theorem 1, we first change the constrained problem (15) into another equivalent form by firstly bringing in several notations. From here, we let \(X \triangleq {\mathbb {R}}^{M\times N}, Y \triangleq X \times X, Z \triangleq W(X) \subset X\), and \(A \triangleq [\nabla , W, K]^{\mathrm {T}}\) denotes an operator that maps X into \(Y \times Z \times X \), where \(\nabla \), W, and K map X into Y, Z, and X, respectively. After introducing two convex functionals \(F_(x)=0 : X \rightarrow {\mathbb {R}}\) and \(G_(\zeta ) \triangleq G([v, z, T]^{\mathrm {T}}) = \left\| T \right\| _1 + \alpha \sum \left\| v \right\| _2+\beta \left\| z \right\| _1 : Y \times Z \times X \rightarrow {\mathbb {R}}\), we give the equivalent formulation of problem (15) as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \min _{x,\zeta }~ F(x)+G(\zeta ) \\ \mathrm {s.t.} ~~~~~~Ax-\zeta =\wp \end{array}\right. \ \end{aligned}$$
(41)

where \(\wp = [0, 0, y] \in Y \times Z \times X \). Then (17), the AL function of (15) turns into

$$\begin{aligned} {\mathcal L}_1(x, \zeta ; p) :=F(x)+G(\zeta )-\langle p, Ax-\zeta -\wp \rangle + (\lambda )/2\left\| Ax-\zeta -\wp \right\| _2^2 \end{aligned}$$
(42)

where \(p = [p_1, p_2, p_3]^{\mathrm {T}} \in Y \times Z \times X \) and \(\lambda = [\lambda _1, \lambda _2, \lambda _3]^{\mathrm {T}} \in {\mathbb {R}} \times {\mathbb {R}} \times {\mathbb {R}}\). Note that \(\langle p, Ax-\zeta -\wp \rangle \) and \(\frac{\lambda }{2}\left\| Ax-\zeta -\wp \right\| _2^2\) mean doing operations per-component, i.e., \(\langle p_1, v-\nabla x \rangle + \langle p_2, z-Wx\rangle + \langle p_3, T-Kx+y \rangle \) and \(\frac{\lambda _1}{2}\left\| v-\nabla x \right\| _2^2\) \(+\frac{\lambda _2}{2}\left\| z-Wx \right\| _2^2 + \frac{\lambda _3}{2}\left\| T-Kx+y \right\| _2^2 \) and so do the other operations.

Now, we give the convergence theorem of Algorithm 1.

Theorem 1

Under the following two assumptions, the sequence \(\left\{ (x^k, \zeta ^k, p^k)\right\} \) generated by Algorithm 1 converges to a KKT point \((x^*, \zeta ^*, p^*)\) of (41).

Assumption 1

There exists a saddle point \(\theta ^* \triangleq (x^*,\zeta ^*,p^*)\) to problem (41), namely \(x^*\), \(\zeta ^*\), and \(p^*\) satisfy the KKT conditions

$$\begin{aligned} p^* \in \partial G(\zeta ^*),~A^{\mathrm {T}}p^* \in \partial F(x^*),~Ax^*-\zeta ^*=\wp . \end{aligned}$$
(43)

where F(x) and \(G(\zeta )\) are both convex functionals, hence, there exist two scalars \(\tau _F\) and \(\tau _G\) satisfy the following two inequalities, respectively.

$$\begin{aligned} \langle t_1-t_2,x_1-x_2 \rangle \ge \tau _F \left\| x_1-x_2 \right\| _2^2, \forall ~ x_1,x_2,t_1\in \partial F(x_1),t_2\in \partial F(x_2) \end{aligned}$$
(44)
$$\begin{aligned} \langle s_1-s_2,\zeta _1-\zeta _2 \rangle \ge \tau _G \left\| \zeta _1-\zeta _2 \right\| _2^2, \forall ~ \zeta _1,\zeta _2,s_1\in \partial G(\zeta _1),s_2\in \partial G(\zeta _2). \end{aligned}$$
(45)

Assumption 2

\(2-\xi >(1-\xi )^2.\)

Before giving the proof of Theorem 1, for simplicity, we straighten the image \(x \in {\mathbb {R}}^{M\times N}\) into a vector sill denoted as \(x \in {\mathbb {R}}^{MN}\) by stacking the columns of x and so do the other variables such as \(\zeta \) and p. Therefore, we have \(\zeta ,~p \in {\mathbb {R}}^{3MN}\), A is an operator that maps \({\mathbb {R}}^{MN}\) into \({\mathbb {R}}^{3MN}\) and \(A^{\mathrm {T}}A \in {\mathbb {R}}^{MN \times MN}\). Moreover, we let \(\left\| x \right\| _\Xi ^2 \triangleq x^{\mathrm {T}}\Xi x\), where \(\Xi \in {\mathbb {R}}^{MN \times MN}\). Furthermore, we introduce the following symbols

$$\begin{aligned}&{{\widehat{p}}} := p^k-\lambda (Ax^{k+1}-\zeta ^{k+1}-\wp ) \end{aligned}$$
(46)
$$\begin{aligned}&\theta ^*:= \left( \begin{array}{c} x^*\\ \zeta ^*\\ p^*\\ \end{array} \right) , \theta ^k:= \left( \begin{array}{c} x^k\\ \zeta ^k\\ p^k\\ \end{array} \right) , \widehat{\theta }:= \left( \begin{array}{c} x^{k+1}\\ \zeta ^{k+1}\\ \widehat{p}\\ \end{array} \right) ,~\forall ~ k=0,1,2,\ldots \end{aligned}$$
(47)

where \(\theta ^*\) is a KKT point, \(\theta ^k\) is the current point, \(\widehat{\theta }\) is the next point as if \(\xi =1\), and

$$\begin{aligned}&G_0:=\left( \begin{array}{ccc} {\mathbf {I}}_{N^2} &{} &{} \\ &{} {\mathbf {I}}_{3N^2} &{} \\ &{} &{} \xi {\mathbf {I}}_{3N^2} \\ \end{array}\right) , ~G_1:=\left( \begin{array}{ccc} \lambda A^{\mathrm {T}}A &{} &{} \\ &{} \mathbf {0}_{3N^2} &{} \\ &{} &{} \frac{1}{\lambda } {\mathbf {I}}_{3N^2} \\ \end{array}\right) \end{aligned}$$
(48)
$$\begin{aligned}&G:=G_0^{-1}G_1:=\left( \begin{array}{ccc} \lambda A^{\mathrm {T}}A &{} &{} \\ &{} \mathbf {0}_{3N^2} &{} \\ &{} &{} \frac{1}{\xi \lambda } {\mathbf {I}}_{3N^2} \\ \end{array}\right) \end{aligned}$$
(49)

where \({\mathbf {I}}\) and \(\mathbf {0}\) refer to the identity matrix and the zero matrix with proper size, respectively. From now on, we also denoted \(\lambda \triangleq \lambda _1=\lambda _2\) for simplicity.

From these definitions, it follows

$$\begin{aligned} \theta ^{k+1}=\theta ^k-G_0(\theta ^k-\widehat{\theta }) \end{aligned}$$
(50)

and \(G \ge 0\); hence, G is a semi-norm.

Proof

We divide this process into the following three parts. \(\square \)

Step 1 To show the boundedness of the sequence \(\left\{ \theta ^k\right\} \).

The optimality conditions of the subproblems of Algorithm 1 are

$$\begin{aligned}&-{{\widehat{p}}}+\lambda A(x^k-x^{k+1}) \in \partial G(\zeta ^{k+1}) \end{aligned}$$
(51)
$$\begin{aligned}&A^{\mathrm {T}}{\widehat{p}} \in \partial F(x^{k+1}). \end{aligned}$$
(52)

By the convexity of G and the first optimality condition in Theorem 1, and (51), it follows that

$$\begin{aligned} \langle \zeta ^{k+1}-\zeta ^*,-({\widehat{p}}-p^*-\lambda A(x^k-x^{k+1}))\rangle \ge \tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2. \end{aligned}$$
(53)

Similarly, by the convexity of g, the second optimality condition in Theorem 1, and (52), we have

$$\begin{aligned}&\langle x^{k+1}-x^*, A^{\mathrm {T}}({{\widehat{p}}}-p^*-\lambda A(x^k-x^{k+1})\rangle + \lambda A^{\mathrm {T}}A(x^k-x^{k+1}) \nonumber \\&\quad \ge \tau _F \left\| x^{k+1}-x^* \right\| _2. \end{aligned}$$
(54)

In addition, it follows the third optimality condition in Theorem 1 and (46) that

$$\begin{aligned} A(x^{k+1}-x^*)-(\zeta ^{k+1}-\zeta ^*)=\frac{1}{\lambda }(p^k-{\widehat{p}}). \end{aligned}$$
(55)

Then, adding (53) and (54) and using (55) give

$$\begin{aligned} \frac{1}{\lambda }< & {} p^k-{\widehat{p}},{\widehat{p}}-p^*-\lambda A(x^k-x^{k+1})>+<x^{k+1}-x^*,\lambda A^{\mathrm {T}} A(x^k-x^{k+1})> \nonumber \\\ge & {} ~ \tau _F \left\| x^{k+1}-x^* \right\| _2^2 +\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2 \end{aligned}$$
(56)

which can be simplified as

$$\begin{aligned} (\widehat{\theta }-\theta ^*)^{\mathrm {T}}G_1(\theta ^k-\widehat{\theta })\ge & {} ~<A(x^k-x^{k+1}),p^k-{\widehat{p}}> \nonumber \\&+\,\tau _F \left\| x^{k+1}-x^* \right\| _2^2+~\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2. \end{aligned}$$
(57)

By rearranging the terms, we have

$$\begin{aligned} (\theta ^k-\theta ^*)^{\mathrm {T}}G_1(\theta ^k-\widehat{\theta })\ge & {} ~ \left\| \theta ^k-\widehat{\theta } \right\| _{G_1}^2+<A(x^k-x^{k+1}),p^k-{\widehat{p}}> \nonumber \\&+~\tau _F \left\| x^{k+1}-x^* \right\| _2^2 +\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2.~~~~ \end{aligned}$$
(58)

From the relationship (50), we get the following identity

$$\begin{aligned} \left\| \theta ^k-\theta ^* \right\| _G^2-\left\| \theta ^{k+1}-\theta ^* \right\| _G^2= 2(\theta ^k-\theta ^*)^{\mathrm {T}}G_1(\theta ^k-\widehat{\theta })-\left\| G_0(\theta ^k-\widehat{\theta }) \right\| _G^2.\nonumber \\ \end{aligned}$$
(59)

By (58), we have

$$\begin{aligned}&\left\| \theta ^k-\theta ^* \right\| _G^2-\left\| \theta ^{k+1}-\theta ^* \right\| _G^2\ge 2\left\| \theta ^k-\widehat{\theta } \right\| _{G_1}^2-\left\| \theta ^k-\widehat{\theta } \right\| _{G_1G_0}^2 \nonumber \\&\quad +~2<A(x^k-x^{k+1}),p^k-{\widehat{p}}>+2\tau _F \left\| x^{k+1}-x^* \right\| _2^2 + 2\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2\nonumber \\ \end{aligned}$$
(60)

and thus it follows

$$\begin{aligned}&\left\| \theta ^k-\theta ^* \right\| _G^2-\left\| \theta ^{k+1}-\theta ^* \right\| _G^2\nonumber \\&\quad \ge \varphi (\theta ^k-\widehat{\theta })+~2\tau _F \left\| x^{k+1}-x^* \right\| _2^2+~2\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2 \end{aligned}$$
(61)

where

$$\begin{aligned} \varphi (\theta ^k-\widehat{\theta })= & {} \varphi (x^k-x^{k+1},\zeta ^k-\zeta ^{k+1},p^k-{\widehat{p}}) \nonumber \\= & {} \left\| x^k-x^{k+1} \right\| _{\lambda A^{\mathrm {T}}A}^2+\frac{2-\xi }{\lambda } \left\| p^k-{\widehat{p}} \right\| _2^2+2(p^k-{\widehat{p}})^{\mathrm {T}}A(x^k-x^{k+1}).\nonumber \\ \end{aligned}$$
(62)

Then, \(\left\| \theta ^k-\theta ^* \right\| _G^2\) is bounded, as a result of which we have the boundedness of \({(x^k,p^k)}\) and that of \({\zeta ^k}\) by (55).

Step 2 To show that for a certain \(\rho >0\), \(\left\| \theta ^k-\theta ^* \right\| _G^2+\frac{\lambda }{\rho }\left\| \varUpsilon ^k \right\| _2^2\) is monotonically nonincreasing, where \(\varUpsilon ^k = Ax^k-\zeta ^k-\wp \) is the residual at iteration k, instead of which, we turn to proof that there exist \(\varpi >0\) such that

$$\begin{aligned}&\left( \left\| \theta ^k-\theta ^* \right\| _G^2+\frac{\lambda }{\rho } \left\| \varUpsilon ^k \right\| _2^2\right) -\left( \left\| \theta ^{k+1}-\theta ^* \right\| _G^2+\frac{\lambda }{\rho } \left\| \varUpsilon ^{k+1} \right\| _2^2\right) \nonumber \\&\quad \ge \varpi \left\| \theta ^k-\theta ^{k+1} \right\| _G^2+2\tau _F \left\| x^k-x^{k+1} \right\| _2^2+2\tau _F \left\| x^{k+1}-x^* \right\| _2^2\nonumber \\&\qquad +\,2\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2. \end{aligned}$$
(63)

We first derive a lower bound for the cross-term \((p^k-{\widehat{p}})^{\mathrm {T}}A(x^k-x^{k+1})\). Combining (52) with the definition of \({\widehat{p}}\), i.e., (46), we have

$$\begin{aligned} \left\{ \begin{array}{ll} A^{\mathrm {T}}[p^{k-1}-\lambda (Ax^k-\zeta ^k-\wp )] \in \partial F(x^k) \\ A^{\mathrm {T}}{\widehat{p}} \in \partial F(x^{k+1}).\end{array}\right. \ \end{aligned}$$
(64)

The difference of the two terms on the left in (64) is

$$\begin{aligned} A^{\mathrm {T}}[p^{k-1}-{\widehat{p}}-\lambda (Ax^k-\zeta ^k-\wp )]=A^{\mathrm {T}}(p^k-{\widehat{p}})-\lambda (1-\xi )A^{\mathrm {T}}(Ax^k-\zeta ^k-\wp ).\nonumber \\ \end{aligned}$$
(65)

By (64), (65), and (46), we get

$$\begin{aligned}&<A^{\mathrm {T}}(p^k-{\widehat{p}}) , x^k-x^{k+1}> \nonumber \\&\quad \ge \tau _F \left\| x^k-x^{k+1} \right\| _2^2+<(1-\xi )\lambda A^{\mathrm {T}}(Ax^k-\zeta ^k-\wp ),x^k-x^{k+1}> \end{aligned}$$
(66)

to which applying the Cauchy–Schwarz inequality gives

$$\begin{aligned}&(p^k-{\widehat{p}})^{\mathrm {T}}A\left( x^k-x^{k+1}\right) \ge <\sqrt{\lambda }\left( Ax^k-\zeta ^k-\wp \right) ,(1-\xi )\sqrt{\lambda }A\left( x^k-x^{k+1}\right)> \nonumber \\&\quad +\,\tau _F \left\| x^k-x^{k+1} \right\| _2^2 \nonumber \\&\ge -\frac{\lambda }{2\rho } \left\| Ax^k-\zeta ^k-\wp \right\| _2^2-\frac{(1-\xi )^2 \lambda \rho }{2} \left\| A\left( x^k-x^{k+1}\right) \right\| _2^2\nonumber \\&\quad +\,\tau _F \left\| x^k-x^{k+1} \right\| _2^2,~\forall ~\rho >0. \end{aligned}$$
(67)

Substituting (67) into (61) and using the definition of \({\widehat{p}}\), we have

$$\begin{aligned}&\left\| \theta ^k-\theta ^* \right\| _G^2+\frac{\lambda }{\rho } \left\| \varUpsilon ^k \right\| _2^2\nonumber \\&\quad \ge \left\| \theta ^{k+1}-\theta ^* \right\| _G^2+\frac{\lambda }{\rho } \left\| \varUpsilon ^{k+1} \right\| _2^2+\lambda \left( 2-\xi -\frac{1}{\rho }\right) \left\| \varUpsilon ^{k+1} \right\| _2^2 \nonumber \\&\qquad +~\lambda \left( 1-(1-\xi )^2\rho \right) \left\| A\left( x^k-x^{k+1}\right) \right\| _2^2+2\tau _F \left\| x^k-x^{k+1} \right\| _2^2 \nonumber \\&\qquad +~2\tau _F \left\| x^{k+1}-x^* \right\| _2^2+2\tau _G \left\| \zeta ^{k+1}-\zeta ^* \right\| _2^2.~~~~~~~~~~~~~~~~~~~~~ \end{aligned}$$
(68)

To prove such \(\varpi >0\) exists for (63), we only need the existence of \(\rho >0\) such that \(2-\xi -\frac{1}{\rho }\) and \(1-(1-\xi )^2\rho >0\), which holds if and only if \(2-\xi >(1-\xi )^2\), i.e., \(\xi \in (0,\frac{1+\sqrt{5}}{2})\).

Step 3 To show the global convergence of Algorithm 1.

Being bounded, \(\left\{ \theta ^k\right\} \) has a converging subsequence \(\left\{ \theta ^{k_j}\right\} \). Let \(\bar{\theta }=\lim _{j\rightharpoondown \infty }\theta ^{k_j}\). Next we will show \(\bar{\theta }\) is a KKT point. Let \(\theta ^*\) denote an arbitrary KKT point.

As we know that \(\left\| \theta ^k-\theta ^* \right\| _G^2+\frac{\lambda }{\rho }\left\| \varUpsilon ^k \right\| _2^2\) is monotonically nonincreasing and thus converging. Due to \(\varpi >0\) , \( \left\| \theta ^k-\theta ^{k+1} \right\| _G^2= \lambda \left\| A(x^k-x^{k+1}) \right\| _2^2+\frac{1}{\lambda \xi } \left\| p^k-p^{k+1} \right\| _2^2 \rightarrow 0\), so \(x^k-x^{k+1}\rightarrow 0\) and \(p^k-p^{k+1}\rightarrow 0\) and the following formula holds

$$\begin{aligned} \varUpsilon ^k= (Ax^k-\zeta ^k-\wp ) \rightarrow 0,~~ as~~k\rightarrow \infty . \end{aligned}$$
(69)

Consequently, \( \left\| \theta ^k-\theta ^* \right\| _G^2\) also converges.

By passing limit on (69) over the subsequence, we have

$$\begin{aligned} A{\bar{x}}-{\bar{\zeta }}=\wp . \end{aligned}$$
(70)

Now on both sides of (51) and (52) taking limit over the subsequence, we obtain \(-\bar{p} \in \partial G(\bar{\zeta })\), \(A^{\mathrm {T}}\bar{p} \in \partial F(\bar{x})\). Then, together with (70), \(\bar{\theta }\) is a KKT point of problem (41) and now we can let \(\theta ^*=\bar{\theta }\). From \(\left\{ \theta ^{k_j}\right\} \rightarrow \bar{\theta }\) in j and the convergence of \(\parallel \theta ^k-\theta ^*\parallel _G^2\) it follows \(\left\| \theta ^k-\theta ^* \right\| _G^2\rightarrow 0 \) in k, which implies that \(p^k\rightarrow p^*\), \(x^k\rightarrow x^*\) and \(\zeta ^k\rightarrow \zeta ^*\) following from (69) and (70).

Then, we have finished the proof of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D. A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise. Circuits Syst Signal Process 36, 3702–3730 (2017). https://doi.org/10.1007/s00034-016-0478-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0478-1

Keywords

Mathematics Subject Classification

Navigation