Skip to main content
Log in

Boundary Dynamics of Memcapacitor in Voltage-Excited Circuits and Relaxation Oscillators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses the boundary dynamics of the charge-controlled memcapacitor for Joglekar’s window function that describes the nonlinearities of the memcapacitor’s boundaries. A closed form solution for the memcapacitance is introduced for general doping factor \(p\). The derived formulas are used to predict the behavior of the memcapacitor under different voltage excitation sources showing a great matching with the circuit simulations. The effect of the doping factor \( p\) on the time domain response of the memcapacitor has been studied as compared to the linear model using the proposed formulas. Moreover, the generalized fundamentals such as the saturation time of the memcapacitor are introduced, which play an important role in many control applications. Then the boundary dynamics under sinusoidal excitation are used as a basis to analyze any periodic signal by Fourier series, and the results have been verified using PSPICE simulations showing a great matching. As an application, two configuration of resistive-less memcapacitor-based relaxation oscillators are proposed and closed form expressions for oscillation frequency and conditions for oscillation are derived in presence of nonlinear model. The proposed oscillator is verified using PSPICE simulation showing a perfect matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Biolek, Z. Biolek, V. Biolková, Spice modelling of memcapacitor. Electron. Lett. 46(7), 520–522 (2010)

    Article  Google Scholar 

  2. D. Biolek, Z. Biolek, V. Biolková, Behavioral modeling of memcapacitor. Radioengineering 20(1), 228–233 (2011)

    Google Scholar 

  3. D. Biolek, V. Biolkova, Mutator for transforming memristor into memcapacitor. Electron. Lett. 46(21), 1428–1429 (2010)

    Article  Google Scholar 

  4. A. Bratkovski, R.S. Williams, Memcapacitor. US Patent App. 13/256,245 (2009)

  5. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  6. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  Google Scholar 

  7. F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 59(11), 2713–2726 (2012). doi:10.1109/TCSI.2012.2190563

    Article  MathSciNet  Google Scholar 

  8. M. Di Ventra, Y. Pershin, L. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  9. M. Di Ventra, Y.V. Pershin, L.O. Chua, Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view]. Proc. IEEE 97(8), 1371–1372 (2009)

    Article  Google Scholar 

  10. M.E. Fouda, M. Khatib, A. Mosad, A. Radwan, Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2701–2708 (2013). doi:10.1109/TCSI.2013.2249172

    Article  MathSciNet  Google Scholar 

  11. M. Fouda, A. Radwan, Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48(23), 1454–1455 (2012)

    Article  Google Scholar 

  12. M.E. Fouda, A. Radwan, Memristor-based voltage-controlled relaxation oscillators. Int. J. Circuit Theory Appl. 42(10), 1092–1102 (2014)

    Article  Google Scholar 

  13. M.E. Fouda, A. Radwan, K. Salama, Effect of boundary on controlled memristor-based oscillator, in 2012 International Conference on Engineering and Technology (ICET), pp. 1–5 (2012)

  14. M.E. Fouda, A.G. Radwan, Meminductor response under periodic current excitations. Circuits Syst. Signal Process. 33(5), 1573–1583 (2014)

    Article  MathSciNet  Google Scholar 

  15. M.E. Fouda, A.G. Radwan, Memcapacitor response under step and sinusoidal voltage excitations. Microelectron. J. 45(11), 1372–1379 (2014). doi:10.1016/j.mejo.2014.08.002

    Article  Google Scholar 

  16. M.E. Fouda, A.G. Radwan, On the mathematical modeling of memcapacitor bridge synapses, in 2014 26th International Conference on Microelectronics (ICM), pp. 1–4 (2014)

  17. M.E. Fouda, A.G. Radwan, Resistive-less memcapacitor-based relaxation oscillator. Int. J. Circuit Theory Appl. (2014). doi:10.1002/cta.1984

    MATH  Google Scholar 

  18. Y. Joglekar, S. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)

    Article  MATH  Google Scholar 

  19. M. Khatib, M.E. Fouda, A. Mosad, K. Salama, A. Radwan, Memristor-based relaxation oscillators using digital gates, in 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), pp. 98–102 (2012)

  20. M. Krems, Y.V. Pershin, M. Di Ventra, Ionic memcapacitive effects in nanopores. Nano Lett. 10(7), 2674–2678 (2010)

    Article  Google Scholar 

  21. C. Li, C. Li, T. Huang, H. Wang, Synaptic memcapacitor bridge synapses. Neurocomputing 122, 370–374 (2013)

    Article  Google Scholar 

  22. J. Martinez, M. Di Ventra, Y.V. Pershin, Solid-state memcapacitor. arXiv preprint arXiv:0912.4921 (2009)

  23. R.E. Meade, G.S. Sandhu, Memcapacitor Devices, Field Effect Transistor Devices, and Non-volatile Memory Arrays. US Patent App. 13/858,141 (2013)

  24. A. Mosad, M.E. Fouda, M. Khatib, K. Salama, A. Radwan, Improved memristor-based relaxation oscillator. Microelectron. J. 44(9), 814–820 (2013)

    Article  Google Scholar 

  25. Y. Pershin, M. Di Ventra, Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)

    Article  Google Scholar 

  26. A. Radwan, M.A. Zidan, K. Salama, Hp memristor mathematical model for periodic signals and DC, in 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 861–864 (2010)

  27. A. Radwan, M.A. Zidan, K. Salama, On the mathematical modeling of memristors, in 2010 International Conference on Microelectronics (ICM) (IEEE, 2010), pp. 284–287

  28. J.P. Strachan, G. Ribeiro, D. Strukov, Memcapacitive devices . US Patent App. 12/548,124 (2009)

  29. D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  30. D. Yu, H.C. Iu, A. Fitch, Y. Liang, A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I Regul. Pap. 61(10), 2888–2896 (2014). doi:10.1109/TCSI.2014.2333687

    Article  Google Scholar 

  31. D. Yu, Y. Liang, H. Chen, H. Iu, Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II. Express Briefs 60(4), 207–211 (2013). doi:10.1109/TCSII.2013.2240879

    Article  Google Scholar 

  32. M. Zidan, H. Omran, A. Radwan, K. Salama, Memristor-based reactance-less oscillator. Electron. Lett. 47(22), 1220–1221 (2011)

    Article  MATH  Google Scholar 

  33. M.A. Zidan, H. Omran, C. Smith, A. Syed, A.G. Radwan, K.N. Salama, A family of memristor-based reactance-less oscillators. Int. J. Circuit Theory Appl. 42(11), 1103–1122 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed E. Fouda.

Appendix

Appendix

To prove that (11) will be reduced to its conventional linear dopant formula, (10) can be rewriten as

$$\begin{aligned} h(D(t),p)=y\Big (D_{s}-\frac{D_{d}}{2}y\Big )+ \sum ^{\infty }_{r=1}{y^{2pr+1}\left( \frac{(2pr+2)D_{s}-(2pr+1)D_{d}\ y}{(2pr+1)(2pr+2)}\right) }. \end{aligned}$$
(38)

Taking the limit \(p\rightarrow \infty \),

$$\begin{aligned} h(D(t),\infty )= D_{s} y-\frac{D_{d} y^{2}}{2}+ \sum ^{\infty }_{r=1} \lim _{p \rightarrow \infty }\left( {y^{2pr+1}\left( \frac{(2pr+2)D_{s}-(2pr+1)D_{d}\ y}{(2pr+1)(2pr+2)}\right) } \right) . \end{aligned}$$
(39)

Since \(y \in [-1,1]\), then \(y^{2p} \rightarrow 0\), the previous formula will be reduced to:

$$\begin{aligned} h(D(t),\infty )=\frac{D_{s}^{2}}{2D_{d}}-\frac{2D^{2}(t)}{D_{d}}. \end{aligned}$$
(40)

Consequently,

$$\begin{aligned} D^{2}(t)=D^{2}_\mathrm{in}+2\eta k \varphi (t) . \end{aligned}$$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, M.E., Radwan, A.G. Boundary Dynamics of Memcapacitor in Voltage-Excited Circuits and Relaxation Oscillators. Circuits Syst Signal Process 34, 2765–2783 (2015). https://doi.org/10.1007/s00034-015-9995-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9995-6

Keywords

Navigation