Skip to main content
Log in

High-Throughput Architectures for Circular Block-Type Low-Density Parity-Check Codes

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes applying a modified quasicyclic low-density parity-check, named as circular block-type LDPC (CB-LDPC), to a wireless communication system to improve the accuracy of received data. The CB-LDPC Matrix H is a circular and irregular matrix that uses the min-sum algorithm for iterative decoding calculations. It adopts bit node processing units, check node processing units, and buffers for a parallel design of a hardware structure with low complexity and a throughput of up to 1.1 Gbps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.G. Amaru, M. Martina, G. Masera, High speed architectures for finding the first two maximum/minimum values. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(12), 2342–2346 (2012)

    Article  Google Scholar 

  2. M.H. Azmi, J. Li, J. Yuan, R. Malaney, LDPC codes for soft decode-and-forward in half-duplex relay channels. IEEE J. Sel. Areas Commun. 31(8), 1402–1413 (2013)

    Article  Google Scholar 

  3. D. Bao, B. Xiang, R. Shen, A. Pan, Y. Chen, X.Y. Zeng, Programmable architecture for flexi-mode QC-LDPC decoder supporting wireless LAN/MAN applications and beyond. IEEE Trans. Circuits Syst. I Reg. Pap. 57(1), 125–138 (2010)

    Article  MathSciNet  Google Scholar 

  4. C. Condo, M. Martina, G. Masera, VLSI implementation of a multi-mode Turbo/LDPC decoder architecture. IEEE Trans. Circuits Syst. I Reg. Pap. 60(6), 1441–1454 (2013)

    Article  MathSciNet  Google Scholar 

  5. W.C. Freitas Jr, A.L.F. de Almeida, J.P.C.L. da Costa, Blind joint channel estimation and data detection for precoded multi-layered space-frequency MIMO schemes. Circuits Syst. Signal Process. 33(4), 1215–1229 (2014)

    Article  Google Scholar 

  6. R. Gallager, Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. García-Herrero, M.J. Canet, J. Valls, Architecture of generalized bit-flipping decoding for high-rate non-binary LDPC codes. Circuits Syst. Signal Process. 32(2), 727–741 (2013)

    Article  Google Scholar 

  8. G. Han, Y.L. Guan, L. Kong, Construction of irregular QC-LDPC codes via masking with ACE optimization. IEEE Commun. Lett. 18(2), 348–351 (2014)

    Article  Google Scholar 

  9. S. Lin, D.J. Costello, Error Control Coding, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 1983)

    Google Scholar 

  10. C. Liu, C. Lin, S. Yen, C. Chen, H. Chang, C. Lee, Y. Hsu, S. Jou, Design of a multimode QC-LDPC decoder based on shift-routing network. IEEE Trans. Circuits Syst. II Exp. Briefs 56(9), 734–738 (2009)

    Article  Google Scholar 

  11. C. Liu, S. Yen, C. Chen, H. Chang, C. Lee, Y. Hsu, S. Jou, An LDPC decoder chip based on self-routing network for IEEE 802.16e applications. IEEE J. Solid-State Circuits 43(3), 684–694 (2008)

    Article  Google Scholar 

  12. D.J.C. MacKay, R.M. Neal, Near Shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645–1646 (1996)

    Article  Google Scholar 

  13. B. Matuz, G. Liva, E. Paolini, M. Chiani, G. Bauch, Low-rate non-binary LDPC codes for coherent and blockwise non-coherent AWGN channels. IEEE Trans. Commun. 61(10), 4096–4107 (2013)

    Article  Google Scholar 

  14. T.L. Narasimhan, A. Chockalingam, EXIT chart based design of irregular LDPC codes for large-MIMO systems. IEEE Commun. Lett. 17(1), 115–118 (2013)

    Article  Google Scholar 

  15. M.T.A. Osman, H.A.H. Fahmy, Y.A.H. Fahmy, M.M. Elsabrouty, A. Shalash, Two extended programmable BCH soft decoders using least reliable bits reprocessing. Circuits Syst. Signal Process. 33(5), 1369–1391 (2014)

    Article  Google Scholar 

  16. P. Palanisamy, R. Thilagavathy, M.R. Kumar, A. Srihari, Efficient realization of CORDIC based LDPC decoder for WiMax system, in International Conference on Signal Processing for Communications Networking, (ICSCN’08) (2008), pp. 41–45

  17. T.J. Richardson, R.L. Urbanke, Efficient encoding of low-density parity-check codes. IEEE Trans. Inform. Theory 47(2), 638–656 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Salamanca, J.J. Murillo-Fuentes, F. Perez-Cruz, Bayesian equalization for LDPC channel decoding. IEEE Tran. Signal Process. 60(5), 2672–2676 (2012)

    Article  MathSciNet  Google Scholar 

  19. X. Shih, C. Zhan, C. Lin, A. Wu, An 8.29 mm\(^2\) 52 mW multi-mode LDPC decoder design for mobile WiMAX system in 0.13 \(\upmu \!\text{ m }\) CMOS process. IEEE J. Solid-State Circuits 43(3), 672–683 (2008)

    Article  Google Scholar 

  20. Y. Sun, J.R. Cavallaro, VLSI architecture for layered decoding of QC-LDPC codes with high circulant weight. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(10), 1960–11964 (2013)

    Article  Google Scholar 

  21. W.M. Tam, F.C.M. Lau, C.K. Tse, A class of QC-LDPC codes with low encoding complexity and good error performance. IEEE Commun. Lett. 14(2), 169–171 (2010)

    Article  Google Scholar 

  22. N.H. Tran, T. Le-Ngoc, T. Matsumoto, H.H. Nguyen, Achieving near-capacity performance on multiple-antenna channels with a simple concatenation scheme. IEEE Trans. Commun. 58(4), 1048–1059 (2010)

    Article  Google Scholar 

  23. Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, S.-W. Chen, An efficient layered decoding architecture for nonbinary QC-LDPC codes. IEEE Trans. Circuits Syst. I Regul. Pap. 59(2), 385–398 (2012)

    Article  MathSciNet  Google Scholar 

  24. C. Xiaoheng, K. Jingyu, L. Shu, V. Akella, Memory system optimization for FPGA-based implementation of quasi-cyclic LDPC codes decoders. IEEE Trans. Circuits Syst. I Regul. Pap. 58(1), 98–111 (2011)

    Article  MathSciNet  Google Scholar 

  25. K. Zhang, X. Huang, Z. Wang, A high-throughput LDPC decoder architecture with rate compatibility. IEEE Trans. Circuits Syst. I Regul. Pap. 58(4), 839–847 (2011)

    Article  MathSciNet  Google Scholar 

  26. K. Zhang, X. Huang, Z. Wang, High-throughput layered decoder implementation for quasi-cyclic LDPC codes. IEEE J. Sel. Areas Commun. 27(6), 985–994 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant NSC 102-2220-E-150-001. The authors thank the National Chip Implementation Center (CIC) of Taiwan for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Hao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KH., Lin, MY. High-Throughput Architectures for Circular Block-Type Low-Density Parity-Check Codes. Circuits Syst Signal Process 34, 2993–3009 (2015). https://doi.org/10.1007/s00034-015-9993-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9993-8

Keywords

Navigation