Skip to main content
Log in

EEG Spike Detection Technique Using Output Correlation Method: A Kalman Filtering Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This correspondence presents a technique for the electroencephalogram (EEG) spike enhancement and detection, which uses the Kalman filtering (KF) approach based on the output correlation method for the nonstationary signal enhancement. We describe the nonstationary EEG signal in terms of the general Markov model, in which the parameters are considered to be time-varying. In the proposed methodology, neither the process and measurement noise statistics nor the initial Kalman blending factor are stringently required. The EEG epileptic spikes (ESs) are pre-emphasized using the output correlation method, and subsequently, the detection is performed using the decision threshold based on the output of same adaptive filter. We have tested the proposed scheme on the synthetic EEG signal corrupted with randomly occurring triangular spikes. The presented simulation results manifest significant improvement in the signal-to-noise ratio (SNR) due to the modified estimation of time-varying parameters of the general Markov model, which in turn leads to the alleviated number of false-positives (FPs). It is apparent that the real-time EEG signal (rat data) can be analyzed using the proposed EEG epileptic spike enhancement and detection adaptive scheme, which outperforms the conventional KF technique under the different SNR conditions. At 10 dB SNR, the output correlation method provides approximately 40 % reduction in FPs for the triangular spikes in synthetic EEG signal and approximately 27.5 % reduction in FPs for ESs in the rat data as compared to the conventional KF scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Acir, I. Oztura, M. Kuntalp, B. Balkan, C. Guzelis, Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans. Biomed. Eng. 52(1), 30–40 (2005)

    Article  Google Scholar 

  2. M. Arnold, W.H.R. Miltner, H. Witte, R. Bauer, C. Braun, AR adaptive modeling of nonstationary time series by means of Kalman filtering. IEEE Trans. Biomed. Eng. v 45(5), 553–562 (1998)

    Article  Google Scholar 

  3. S. Aydin, Comparison of power spectrum predictors in computing coherence functions for intracortical EEG signals. Ann. Biomed. Eng. 37(1), 192–200 (2009)

    Article  Google Scholar 

  4. G. Bodenstein, H.M. Praetorious, Feature extraction from the electroencephalogram by adaptive segmentation. Proc. IEEE 65(5), 642–652 (1977)

    Article  Google Scholar 

  5. S. Dandapat, G.C. Ray, Spike detection in biomedical signal using mid-prediction filter. IEEE Trans. Sign. Process. 42(9), 2276–2279 (1994)

    Article  Google Scholar 

  6. P.J. Durka, Adaptive time-frequency parameterization of epileptic spikes. Phys. Rev. E 69, 051914 (2004)

    Article  Google Scholar 

  7. T.P. Exarchos, A.T. Tzallas, D.I. Fotiadis, S. Konitsiotis, S. Giannopoulos, EEG transient event detection and classification using association rules. IEEE Trans. Inf. Technol. Biomed. 10(3), 451–457 (2006)

    Article  Google Scholar 

  8. G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, H.T. Nagle, A comparison of noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1), 85–98 (1990)

    Article  Google Scholar 

  9. J.D. Frost, P. Kellaway, R.A. Harachovy, D.G. Glaze, E.M. Mizrahi, Changes in epileptic configuration associated with attainment of seizure control. Ann. Neurol. 20(6), 723–726 (1986)

    Article  Google Scholar 

  10. H. Garg, A.K. Kohli, Nonstationary-epileptic-spike detection algorithm in EEG signal using SNEOs. Biomed. Eng. Lett. 3(2), 80–86 (2013)

    Article  Google Scholar 

  11. D. Godard, Channel equalization using a Kalman filter for fast data transmission. IBM J. Res. Dev. 18(3), 267–273 (1974)

    Article  MATH  Google Scholar 

  12. M.S. Grewal, A.P. Andrew, Kalman Filtering: Theory and Practice (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  13. M.S. Grewal, A.P. Andrews, Kalman Filtering Theory and Practice Using MATLAB, 3rd edn. (Wiley, New York, 2008)

    Book  Google Scholar 

  14. A.C. Guyton, Text Book of Medical Physiology (Saunders, Philadelphia, 1986)

    Google Scholar 

  15. H. Hassanpour, M. Mesbah, B. Boashash, EEG spike detection using time-frequency signal analysis. in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal (2004), vol. 5, pp. 421–424

  16. C. James, M. Hagan, R. Jones, P. Bones, G. Carroll, Multireference adaptive noise canceling applied to the EEG. IEEE Trans. Biomed. Eng. 44(8), 775–779 (1997)

    Article  Google Scholar 

  17. S.M. Kay, Fundamentals of Statistical Signal Processing Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  18. K.H. Kim, S.J. Kim, Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural network classifier. IEEE Trans. Biomed. Eng. 47(10), 1406–1411 (2000)

    Article  Google Scholar 

  19. M.B. Malarvili, H. Hassanpour, M. Mesbah, B. Boashash, A histogram-based electroencephalogram spike detection. in Proceedings of 8th International Symposium on Signal Processing & Its Applications (2005), pp. 207–210

  20. R.K. Mehra, On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control. AC–15(2), 175–184 (1970)

    Article  MathSciNet  Google Scholar 

  21. R.K. Mehra, On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans. Autom. Control. AC–16(1), 12–21 (1971)

    Article  MathSciNet  Google Scholar 

  22. R.K. Mehra, Approaches to adaptive filtering. IEEE Trans. Autom. Control. 17(5), 693–698 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Mukhopadhyay, G.C. Ray, A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45(2), 1406–1411 (2000)

    Google Scholar 

  24. E. Niedermeyer, F.D. Silva, Electroencephalography: Basic Principals, Clinical Applications and Related Fields (Williams and Wilkins, Baltimore, 1999)

    Google Scholar 

  25. V.P. Oikonomou, A.T. Tzallas, D.I. Fotiadis, A Kalman filter based methodology for EEG spike enhancement. Comput. Methods Programs Biomed. 85(2), 101–108 (2007)

    Article  Google Scholar 

  26. C.C.C. Pang, A. Upton, C. Shine, M. Kamath, A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans. Biomed. Eng. 50(4), 521–525 (2003)

    Article  Google Scholar 

  27. A. Papoulis, Probab. Random Var. Stoch. Process. (McGraw-Hill, New York, 1984)

    Google Scholar 

  28. V. Parsa, P. Parker, Multireference adaptive noise cancellation applied to somatosensory evoked potentials. IEEE Trans. Biomed. Eng. 41(8), 792–800 (1994)

    Article  Google Scholar 

  29. W.D. Penny, S.J. Roberts, Dynamic models for nonstationary signal segmentation. Comput. Biomed. Res. 32(6), 483–502 (1999)

    Article  Google Scholar 

  30. R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signal. Am. Phys. Soc. Phys. Rev. E 65(041903), 1–14 (2002)

    Google Scholar 

  31. R.Q. Quiroga, T. Kreuz, P. Grassberger, Event synchronization: a simple and fast method tp measure synchronicity and time delay patterns. Am. Phys. Soc. Phys. Rev. E 66(041904), 1–9 (2002)

    Google Scholar 

  32. P. Sadasivan, D.N. Dutt, ANC schemes for the enhancement of EEG signals in the presence of EOG artifacts. Comput. Biomed. Res. 29(1), 27–40 (1996)

    Article  Google Scholar 

  33. A.H. Sayed, T. Kailath, A state-space approach to adaptive RLS filtering. IEEE Signal Process. Mag. 11(3), 18–60 (1994)

    Article  MathSciNet  Google Scholar 

  34. H. Semmaoui, J. Drolet, A. Lakhssassi, M. Sawan, Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory. IEEE Trans. Biomed. Eng. 59(2), 474–482 (2012)

    Article  Google Scholar 

  35. C. Shao, S. Li, J. Fan, EEG spike detection based on qualitative modelling of visual observation, in Proceedings of IEEE 4th International Conference Fuzzy Systems and Knowledge. Discovery (2007), vol. 2, pp. 745–748

  36. F.H.L.D. Silva, A. Dijk, H. Smits, Detection of nonstationarities in EEG’s using autoregressive model—an application to EEG’s of epileptics, in CEAN-Computerized EEG Analysis, ed. by G. Dolce, H. Kunkel (Gustav Fisher, Stuttgart, 1975), pp. 180–199

    Google Scholar 

  37. L. Tarassenko, Y.U. Khan, M.R.G. Holt, Identification of inter-ictal spikes in the EEG using neural network analysis. Proceedings of IEEE Science Measurement and Technology 145(6), 270–278 (1998)

    Article  Google Scholar 

  38. M.P. Tarvainen, S. Georgiadis, P.A. Karjalainen, Time-varying analysis of heart rate variability with Kalman smoother algorithm. Physiol. Meas. 27(3), 225–239 (2006)

    Article  Google Scholar 

  39. A.T. Tzallas, V.P. Oikonomous, D.I. Fotiadis, Epileptic spike detection using a Kalman filter based approach, in Proceedings of IEEE International Conference on EMBS (2006), pp. 501–503

  40. A.T. Tzallas, M.G. Tsipouras, D.G. Tsalikakis, E.C. Karvounis, L. Astrakas, S. Konitsiotis, M. Tzaphlidou, Automated Epileptic Seizure Detection Methods: A Review Study (INTECH Open Access Publisher, 2012)

  41. A.M. White, P.A. Williams, D.J. Ferraro, S. Clark, S.D. Kadam, F.E. Dudek, K.J. Staley, Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J. Neurosci. Methods 152(1–2), 255–266 (2006)

    Article  Google Scholar 

  42. G. Yen, A.N. Michel, A learning and forgetting algorithm in associative memories: results involving pseudo-inverses. IEEE Trans. Circuit Syst. 38(10), 1193–1205 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Poonam Gakhar Kohli, Associate Professor, Physiology Department, Punjab Institute of Medical Science Jalandhar, affiliated to Baba Farid University, Punjab, India, for her fruitful suggestions and motivational discussions regarding Physiology and Neurology. However, the EEG signals (publicly available) can be downloaded from a web page entitled with EEG, ERP and single cell recordings database by Quiroga [30, 31], on http://www.vis.caltech.edu/~rodri/data.htm.

Conflict of interest

Harish Kumar Garg and Amit Kumar Kohli declare that they have no conflict of interest in relation to the research work presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Kohli.

Appendices

Appendix 1

In the innovation correlation approach [22], it is apparent that

$$\begin{aligned} \vec {\beta }\left( {l;t+P} \right) =E\left[ {\zeta ^{-}\left( {t+P} \right) \zeta ^{-} \left( {t+P-l} \right) ^\mathrm{T}} \right] \end{aligned}$$
(66)

Substitution of (26) in the above equation results in

$$\begin{aligned} \vec {\beta }\left( {l\ne 0;t+P} \right)&= \vec {C}\left( {t+P} \right) E\left[ {\hat{{e}}^{-}\left( {t+P} \right) \hat{{e}}^{-}\left( {t+P-l} \right) ^\mathrm{T}} \right] \vec {C}^\mathrm{T}\left( {t+P} \right) \nonumber \\&+\, \vec {C}\left( {t+P} \right) E\left[ {\hat{{e}}^{-}\left( {t+P} \right) \vec {V}^\mathrm{T}\left( {t+P-l} \right) } \right] \end{aligned}$$
(67)
$$\begin{aligned} \vec {\beta }\left( {l=0;t+P} \right)&= \vec {C}\left( {t+P} \right) \hat{{P}}_e^- \left( {t+P} \right) \vec {C}^\mathrm{T}\left( {t+P} \right) +\vec {R}=\vec {\beta }\left( {t+P} \right) \end{aligned}$$
(68)

However, the solution of (67) requires \(\hat{{e}}^{-}\left( {t+P} \right) \) and \(\hat{{e}}^{-}\left( {t+P-l} \right) \). Therefore, by using equation (18) and (21), it can be shown that

$$\begin{aligned} \hat{{e}}^{-}\left( {t+P} \right)&= \vec {A}\left[ {I_P -\vec {K}\left( {t+P-1} \right) \vec {C}\left( {t+P-1} \right) } \right] \hat{{e}}^{-}\left( {t+P-1} \right) \nonumber \\&-\,\vec {A}\left[ {\vec {K}\left( {t+P-1} \right) \vec {V}\left( {t+P-1} \right) } \right] +\vec {W}\left( {t+P} \right) \end{aligned}$$
(69)

Further simplification of (69) is only possible under the static conditions, i.e., \(\vec {K}\left( {t+P-1} \right) =\vec {K}\left( {t+P} \right) =\vec {K}_0 \) (a priori sub-optimal Kalman gain) and \(\vec {C}\left( {t+P-1} \right) =\vec {C}\left( {t+P} \right) =\vec {C}\), which leads to

$$\begin{aligned} \hat{{e}}^{-}\left( {t+P} \right)&= \left[ {\vec {A}\left\{ {I_P -\vec {K}_0 \vec {C}} \right\} } \right] ^{l}\hat{{e}}^{-}\left( {t+P-l} \right) \nonumber \\&+\,\sum _{j=1}^l {\left[ {\vec {A}\left\{ {I_P -\vec {K}_0 \vec {C}} \right\} } \right] ^{j-1}\vec {W}\left( {t+P-j+1} \right) }\nonumber \\&-\,\sum _{j=1}^l {\left[ {\vec {A}\left\{ {I_P -\vec {K}_0 \vec {C}} \right\} } \right] ^{j-1}\vec {A}\vec {K}_0 \vec {V}\left( {t+P-j} \right) } \end{aligned}$$
(70)

This method is not supporting the dynamic conditions arising in the nonstationary EEG signal. Moreover, this approach is extremely cumbersome.

Appendix 2

In the mathematical analysis of EEG signals, we need to calculate \(\vec {R}_Y \left( {l;t+P} \right) \), such that

$$\begin{aligned} \vec {R}_Y \left( {l;t+P} \right) =E\left[ {\vec {Y}\left( {t+P} \right) \vec {Y}^\mathrm{T}\left( {t+P-l} \right) } \right] \end{aligned}$$
(71)

It can be calculated using the simple statistical approach [27] as

$$\begin{aligned} \hat{{R}}_Y \left( {l;t+P} \right) =\left( {1\big /{\left( {M+1} \right) }} \right) \sum _{m=l}^M {\vec {Y}\left( {t+P-m+l} \right) \vec {Y}^\mathrm{T}} \left( {t+P-m} \right) \end{aligned}$$
(72)

where the value of M is kept high to give

$$\begin{aligned} \hat{{R}}_Y \left( {l;t+P} \right)&= \left( {1\big /{\left( {M+1} \right) }} \right) \nonumber \\&\times \left[ {\begin{array}{l} \vec {Y}\left( {t+P} \right) \vec {Y}^\mathrm{T}\left( {t+P-l} \right) + \\ \sum _{\bar{{m}}=l}^{M-1} {\vec {Y}\left( {t+P-\bar{{m}}+l-1} \right) \vec {Y}^\mathrm{T}} \left( {t+P-\bar{{m}}-1} \right) \\ \end{array}} \right] \nonumber \\ \end{aligned}$$
(73)

However, it can be approximated as

$$\begin{aligned} \hat{{R}}_Y \left( {l;t+P} \right)&\approx \left[ {\frac{\vec {Y}\left( {t+P} \right) \vec {Y}^\mathrm{T}\left( {t+P-l} \right) }{M+1}} \right] \nonumber \\&\quad +\,\left[ {\hat{{R}}_Y \left( {l;t+P-1} \right) -\frac{\hat{{R}}_Y \left( {l;t+P-1} \right) }{M+1}} \right] \end{aligned}$$
(74)
$$\begin{aligned} \hat{{R}}_Y \left( {l;t+P} \right)&\approx \hat{{R}}_Y \left( {l;t+P-1} \right) \nonumber \\&\quad +\,\left[ {\frac{\vec {Y}\left( {t+P} \right) \vec {Y}^\mathrm{T}\left( {t+P-l} \right) -\hat{{R}}_Y \left( {l;t+P-1} \right) }{M+1}} \right] \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H.K., Kohli, A.K. EEG Spike Detection Technique Using Output Correlation Method: A Kalman Filtering Approach. Circuits Syst Signal Process 34, 2643–2665 (2015). https://doi.org/10.1007/s00034-015-9982-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9982-y

Keywords

Navigation