Skip to main content
Log in

Distinguishing CPFSK from QAM and PSK Modulations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Digital modulation classification is important for many civilian as well as military applications. In this paper, we propose a simple and robust feature to distinguish continuous-phase FSK from QAM and PSK modulations. The feature is based on product of two consecutive signal values and on time averaging of imaginary part of the product. Conditional probability density functions of the feature given modulation type are determined. In order to overcome the complexity of calculating probability density functions, central limit theorem for strictly stationary m-dependent sequences is used to obtain Gaussian approximations. After calculating probability density functions, thresholds are determined based on minimization of total probability of misclassification. Since threshold-based results are valid for special cases requiring knowledge of some parameters, we resort to usage of support vector machines for classification, which require little training and no a priori information except for carrier frequency. Following that joint effects on the performance of carrier offset, fast fading, and non-synchronized sampling are studied in the presence of additive white Gaussian noise. For comparison purposes, rectangular pulse shape is used. To prove practical usefulness, not only the performance is analyzed for root-raised cosine pulses but also for quite less oversampling of symbols than what is found in other approaches. In the course of doing that, the performance is compared with wavelet-based feature that uses support vector machines for modulation separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Aslam, Z. Zhu, A. Nandi, Automatic modulation classification using combination of genetic programming and KNN. IEEE Trans. Wirel. Commun. 11(8), 2742–2750 (2012)

    Google Scholar 

  2. M. Bari, M. Doroslovački, Quickness of the instantaneous frequency based classifier distinguishing BFSK from QAM and PSK modulations. in Proceedings of 47th Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2013, pp. 836–840

  3. M. Bari, H. Mustafa, M. Doroslovački, Performance of the instantaneous frequency based classifier distinguishing BFSK from QAM and PSK modulations for asynchronous sampling and slow and fast fading. in Proceedings of 47th Conference on Information Sciences and Systems (Johns Hopkins University, Baltimore, MD, 2013)

  4. P. Brockwell, R. Davis, Time Series: Theory and Methods (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  5. C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  6. W. Cheney, D. Kincaid, Numerical Mathematics and Computing (Brooks/Cole, Pacific Grove, 1994)

    MATH  Google Scholar 

  7. H. Deng, M. Doroslovački, H. Mustafa, X. Jinghao, K. Sunggy, Instantaneous feature based algorithm for HF digital modulation classification. in Proceedings of Conference on Information Sciences and Systems (Princeton University, NJ, 2003)

  8. O. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1(2), 137–156 (2007)

    Article  Google Scholar 

  9. G. Feyh, M. Kuckenwaitz, J. Reichert, HF-signal surveillance: signal detection, classification and parameter estimation. in Proceedings of MILCOM, 1994, pp. 755–759

  10. S. Haykin, Communication Systems (Wiley, New York, 1994)

    Google Scholar 

  11. K.C. Ho, W. Prokopiw, Y.T. Chan, Modulation identification of digital signals by the wavelet transform. IEE Proc. Radar Sonar Navig. 147(4), 169–176 (2000)

    Article  Google Scholar 

  12. S. Kay, A fast and accurate single frequency estimator. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1987–1990 (1989)

    Article  Google Scholar 

  13. A. Leaon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd edn. (Addison Wesley, Reading, 1994)

    Google Scholar 

  14. H. Li, O.A. Dobre, Y. Bar-Ness, W. Su, Nonlinear carrier frequency offsets estimation using antenna arrays. in Proceedings of IEEE MILCOM, vol. 1, Atlantic City, NJ, 2005, pp. 570–575

  15. B.G. Mobasseri, Constellation shape as a robust signature for digital modulation recognition. in Proceedings of MILCOM, vol. 1, 1999, pp. 442–446

  16. H. Mustafa, M. Doroslovački, Effects of symbol rate on the classification of digital modulation signals. in Proceedings of ICASSP, vol. 5, Philadelphia, 2005, pp. 437–440

  17. H. Mustafa, M. Doroslovački, Expansion of maximum likelihood modulation classifier to nonlinear modulations. in Proceedings of Conference on Information Sciences and Systems (Johns Hopkins University, NJ, 2005)

  18. H. Mustafa, M. Doroslovački, Effects of carrier offset on the classification of binary frequency shift keying based on the product of two consecutive signal values. in Proceedings of Conference on Information Sciences and Systems (The Princeton University, 2006)

  19. C.L. Nikias, A.P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework (Prentice Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  20. P. Panagiotou, A. Anastasopoulos, A. Polydoros, Likelihood ratio tests for modulation classification. in Proceedings of MILCOM, vol. 2, Monterey, CA, 2000, pp. 670–674

  21. A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes, 4th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  22. S.U. Pawar, J.F. Doherty, Modulation recognition in continuous phase modulation using approximate entropy. IEEE Trans. Inf. Forensics Secur. 6(3), 843–852 (2011)

    Article  Google Scholar 

  23. Q. Shi, Y. Karasawa, Automatic modulation identification based on the probability density function of signal phase. IEEE Trans. Commun. 60(4), 1033–1044 (2012)

    Article  Google Scholar 

  24. A. Swami, B. Sadler, Modulation classification via hierarchical agglomerative cluster analysis. in Proceedings of Signal Processing Advances in Wireless Communications, 1997, pp. 141–144

  25. A. Swami, B.M. Sadler, Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 3, 416–429 (2000)

    Article  Google Scholar 

  26. H. Wang, O. Dobre, C. Li, R. Inkol, Joint classification and parameter estimation of M-FSK signals for cognitive radio. in Proceedings of IEEE ICC, Ottawa, Canada, 2012, pp. 1732–1736

  27. W. Wei, J.M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 48(2), 189–193 (2000)

    Article  Google Scholar 

  28. J. Xu, W. Su, M. Zhou, Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. 41(2), 455–469 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bari.

Appendix

Appendix

Here, we determine the mean and C of F when \(\varDelta '\ne 0\). Assuming \(\varDelta '\ne 0\), the means for 16-QAM, BPSK and 4-PSK signals for \(N_s>1\) are

$$\begin{aligned} E[F]=\biggl (1-\frac{1}{N_s}\biggr )\sin (\varDelta '). \end{aligned}$$
(35)

For BFSK the mean value is given by (18). For \(\tau \ge 0\), \(C[\tau ]\) for BFSK, 16-QAM, BPSK and 4-PSK, respectively, are

$$\begin{aligned} C[\tau ]= & {} \left\{ \begin{array}{l} \frac{N_s-\tau }{4N_s}\Bigl (\sin (\beta _1'+\varDelta ')-\sin (\beta _2'+\varDelta ')\Bigr )^2 \\ -\,\frac{\sigma ^2}{2}\biggl \{\frac{1}{4N_s}\Big [\cos ((\beta _1'-\beta _2')N_s+\beta _1'+\beta _2'+2\varDelta ') \\ +\,\cos ((\beta _2'-\beta _1')N_s+\beta _1'+\beta _2'+2\varDelta ') \\ +\,\cos ((\beta _1'-\beta _2')(N_s-1)+\beta _1'+\beta _2'+2\varDelta ') \\ +\,\cos ((\beta _2'-\beta _1')(N_s-1)+\beta _1'+\beta _2'+2\varDelta ')\Bigr ] \\ +\,\Bigl (\frac{1}{2}-\frac{1}{2N_s}\Bigr )\Bigl (\cos (2\beta _1'+2\varDelta ')+\cos (2\beta _2'+2\varDelta ')\Bigr )\biggr \}\delta _{\tau ,1} \\ +\,\Big (\sigma ^2+\frac{\sigma ^4}{2}\Bigr )\delta _{\tau ,0},\quad 0\le \tau \le N_s-1 \\ 0, \quad \tau \ge N_s \end{array} \right. \end{aligned}$$
(36)
$$\begin{aligned} C[\tau ]= & {} \left\{ \begin{array}{l} \frac{1}{2N_s}+\frac{8}{25}\Bigl (1-\frac{1}{N_s}\Bigr )\sin ^2(\varDelta ')+\sigma ^2+\frac{\sigma ^4}{2},\quad \tau =0 \\ \frac{8}{25}\Bigl (1-\frac{\tau +1}{N_s}\Bigr )\sin ^2(\varDelta ')\\ -\,\biggl [\sigma ^2\Big (\frac{1}{2}-\frac{1}{N_s}\Bigr )\cos (2\varDelta ')\biggr ]\delta _{\tau ,1},\quad 1\le \tau \le N_s-1 \\ 0,\quad \tau \ge N_s \end{array} \right. \end{aligned}$$
(37)
$$\begin{aligned} C[\tau ]= & {} \left\{ \begin{array}{l} \frac{1}{N_s}\sin ^2(\varDelta ')+\sigma ^2+\frac{\sigma ^4}{2},\quad \tau =0 \\ ~ -\biggl [\sigma ^2\Big (\frac{1}{2}-\frac{1}{N_s}\Bigr )\cos (2\varDelta ')\biggr ]\delta _{\tau ,1},\quad \tau \ne 0 \end{array} \right. \end{aligned}$$
(38)
$$\begin{aligned} C[\tau ]= & {} \left\{ \begin{array}{l} \frac{1}{2N_s}+\sigma ^2+\frac{\sigma ^4}{2},\quad \tau =0 \\ -\,\biggl [\sigma ^2\Big (\frac{1}{2}-\frac{1}{N_s}\Bigr )\cos (2\varDelta ')\biggr ]\delta _{\tau ,1},\quad \tau \ne 0. \end{array} \right. \end{aligned}$$
(39)

Note that \(C[-\tau ]=C[\tau ]\). The closed-form expressions of C for BFSK, 16-QAM, BPSK and 4-PSK signals, respectively, are

$$\begin{aligned} C_{\text{ BFSK }}= & {} \frac{N_s}{4}\Bigl (\sin (\beta _1'+\varDelta ')-\sin (\beta _2'+\varDelta ')\Bigr )^2+\frac{\sigma ^4}{2}\nonumber \\&+\,\sigma ^2\Biggl \{1-\biggl \{\Bigl (\frac{1}{2}-\frac{1}{2N_s}\Bigr )\Bigl (\cos (2\beta _1'+2\varDelta ')+\cos (2\beta _2'+2\varDelta ')\Bigr )\nonumber \\&+\, \frac{1}{4N_s}\Big [\cos ((\beta _1'-\beta _2')N_s+\beta _1'+\beta _2'+2\varDelta ')\nonumber \\&+\, \cos ((\beta _2'-\beta _1')N_s+\beta _1'+\beta _2'+2\varDelta ')\nonumber \\&+\, \cos ((\beta _1'-\beta _2')(N_s-1)+\beta _1'+\beta _2'+2\varDelta ')\nonumber \\&+\, \cos ((\beta _2'-\beta _1')(N_s-1)+\beta _1'+\beta _2'+2\varDelta ')\Bigr ]\biggr \}\Biggr \} \end{aligned}$$
(40)
$$\begin{aligned} C_{\text{16-QAM }}= & {} \frac{1}{2N_s}+\frac{8}{25}\Bigl (N_s+\frac{1}{N_s}-2\Bigr )\sin ^2(\varDelta ')+\frac{\sigma ^4}{2}\nonumber \\&+\, \sigma ^2\biggl [1-\Big (1-\frac{2}{N_s}\Bigr )\cos (2\varDelta ')\biggr ] \end{aligned}$$
(41)
$$\begin{aligned} C_{\text{ BPSK }}= & {} \frac{1}{N_s}\biggl \{2\sigma ^2+\frac{N_s\sigma ^4}{2}+\Big [2\sigma ^2(N_s-2)+1\Big ]\sin ^2(\varDelta ')\biggr \} \end{aligned}$$
(42)
$$\begin{aligned} C_{\text{4-PSK }}= & {} \frac{1}{N_s}\Bigl [2\sigma ^2+\frac{N_s\sigma ^4}{2}+\frac{1}{2}+2\sigma ^2(N_s-2)\sin ^2(\varDelta ')\Bigr ]. \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bari, M., Doroslovački, M. Distinguishing CPFSK from QAM and PSK Modulations. Circuits Syst Signal Process 35, 1355–1375 (2016). https://doi.org/10.1007/s00034-015-0126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0126-1

Keywords

Navigation