Skip to main content
Log in

Optimal M-PAM Spread-Spectrum Data Embedding with Precoding

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We consider M-level pulse amplitude modulation (M-PAM) spread-spectrum (SS) data embedding in transform domain host data. The process of data embedding can be viewed as delivering information through the channel including additive interference from host that is known to the embedder. We first utilize the knowledge of second-order statistics of host to design optimal carrier that maximizes the signal-to-interference-plus-noise ratio at the decoder end. Then, inspired by Tomlinson–Harashima precoding used in communication systems, a symbol-by-symbol precoding scheme is developed for M-PAM SS embedding to alleviate the impact of the interference which is explicitly known to embedder. For any given embedding carrier and host data, we aim at designing precoding algorithm to minimize the receiver bit error rate (BER) with any given host distortion budget, and conversely minimize the distortion at any target BER. Experimental studies demonstrate that the proposed precoded SS embedding approach can significantly improve BER performance over conventional SS embedding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Additive white Gaussian noise is frequently viewed as a suitable model for malicious or accidental attacks, such as quantization errors, channel transmission disturbances, and/or image processing attacks.

  2. With block MS distortion \({\mathcal {D}}\), the peak signal-to-noise ratio (PSNR) of the image due to embedding can be calculated by \( \mathrm {PSNR} = 20 \mathrm {log}_{10}(255) - 10 \mathrm {log}_{10} ( {\mathcal {D}}/64)\). The embedding (watermarking) distortion to attack noise ratio (WNR) measure can also be easily obtained by \( \mathrm {WNR} = 10 \mathrm {log}_{10} ({\mathcal {D}}/64/\sigma _n^2)\).

References

  1. A. Abrardo, M. Barni, A new watermarking scheme based on antipodal binary dirty paper coding. IEEE Trans. Inf. Forensics Secur. 9(6), 1380–1393 (2014)

    Article  Google Scholar 

  2. C.B. Adsumilli, M.C.Q. Farias, S.K. Mitra, M. Carli, A robust error concealment technique using data hiding for image and video transmission over lossy channels. IEEE Trans. Circuits Syst. Video Technol. 15(11), 1394–1406 (2005)

    Article  Google Scholar 

  3. M. Barni, F. Bartolini, A. De Rosa, A. Piva, A new decoder for the optimum recovery of nonadditive watermarks. IEEE Trans. Image Process. 10(8), 755–766 (2001)

    Article  Google Scholar 

  4. M. Barni, F. Bartolini, A. De Rosa, A. Piva, Optimum decoding and detection of multiplicative watermarks. IEEE Trans. Signal Process. 51(5), 1118–1123 (2003)

    Article  Google Scholar 

  5. H. Cao, A.C. Kot, On establishing edge adaptive grid for bilevel image data hiding. IEEE Trans. Inf. Forensics Secur. 8(9), 1508–1518 (2013)

    Article  Google Scholar 

  6. M.H.M. Costa, Writing on dirty paper. IEEE Trans. Inf. Theory 29(3), 439–441 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. I.J. Cox, J. Kilian, F.T. Leighton, T. Shannon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  8. X. Feng, H. Zhang, H.-C. Wu, Y. Wu, A new approach for optimal multiple watermarks injection. IEEE Signal Proc. Lett. 18(10), 575–578 (2011)

    Article  Google Scholar 

  9. B. Feng, W. Lu, W. Sun, Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans. Inf. Forensics Secur. 10(2), 243–255 (2015)

    Article  Google Scholar 

  10. J. Fridrich, Steganography in Digital Media, Principles, Algorithms, and Applications (Cambridge Univeristy Press, Cambridge, 2010)

    MATH  Google Scholar 

  11. M. Gkizeli, D.A. Pados, M.J. Medley, SINR, bit error rate, and Shannon capacity optimized spread-spectrum steganography, in Proceedings IEEE International Conference on Image Processing (ICIP), Singapore, Oct. 2004, pp. 1561–1564

  12. M. Gkizeli, D.A. Pados, M.J. Medley, Optimal signature design for spread-spectrum steganography. IEEE Trans. Image Process. 16(2), 391–405 (2007)

    Article  MathSciNet  Google Scholar 

  13. S. Glisic, B. Vucetic, Spread Spectrum CDMA Systems for Wireless Communications (Artech House, Norwood, MA, 1997)

    Google Scholar 

  14. H. Harashima, H. Miyakawa, Matched-transmission technique for channels with intersymbol interference. IEEE Trans. Commun. 20(4), 774–780 (1972)

    Article  Google Scholar 

  15. J. Hernandez, M. Amado, F. Pérez-González, DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans. Image Process. 9(1), 55–68 (2000)

    Article  Google Scholar 

  16. Y. Huang, C. Liu, S. Tang, S. Bai, Steganography integration into a low-bit rate speech codec. IEEE Trans. Inf. Forensics Secur. 7(6), 1865–1875 (2012)

    Article  Google Scholar 

  17. M. Kutter, S. Winkler, A vision-based masking model for spreadspectrum image watermarking. IEEE Trans. Image Process. 11(1), 16–25 (2002)

    Article  Google Scholar 

  18. E.Y. Lam, J.W. Goodman, A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)

    Article  MATH  Google Scholar 

  19. M. Li, M. Kulhandjian, D.A. Pados, S.N. Batalama, M.J. Medley, J.D. Matyjas, On the extraction of spread-spectrum hidden data in digital media, in Proceedings on International Conference on Communications (ICC), Ottawa, Canada, June 2012, pp. 1046–1050

  20. M. Li, M. Kulhandjian, D.A. Pados, S.N. Batalama, M.J. Medley, Extracting spread-spectrum hidden data from digital media. IEEE Trans. Inf. Forensics Secur. 8(7), 1201–1210 (2013)

    Article  Google Scholar 

  21. S.-C. Liu, W.-H. Tsai, Line-based cubism-like image—a new type of art image and its application to lossless data hiding. IEEE Trans. Inf. Forensics Secur. 7(5), 1448–1458 (2012)

    Article  Google Scholar 

  22. H.S. Malvar, D.A. Florencio, Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans. Signal Process. 51(4), 898–905 (2003)

    Article  MathSciNet  Google Scholar 

  23. L.M. Marvel Jr, C.G. Boncelet, C.T. Retter, Spread spectrum image steganography. IEEE Trans. Image Process. 8, 1075–1083 (1999)

    Article  Google Scholar 

  24. P. Moulin, A. Ivanović, The zero-rate spread-spectrum watermarking game. IEEE Trans. Signal Process. 51(4), 1098–1117 (2003)

    Article  MathSciNet  Google Scholar 

  25. S. Pereira, S. Voloshynovskiy, T. Pun, Optimized wavelet domain watermark embedding strategy using linear programming, in Proceedings on SPIE Wavelet Applications Conference, Orlando, FL, April 2000, vol. 4056, pp. 490–498

  26. C. Qiang, T.S. Huang, An additive approach to transform-domain information hiding and optimum detection structure. IEEE Trans. Multimed. 3(3), 273–284 (2001)

    Article  Google Scholar 

  27. G. Schaefer, M. Stich, UCID–an uncompressed colour image database, in Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia, San Jose, CA, Jan. 2004, pp. 472–480

  28. M.D. Swanson, M. Kobayashi, A.H. Tewfik, Multimedia data-embedding and watermarking technologies. Proc. IEEE 86(6), 1064–1087 (1998)

    Article  Google Scholar 

  29. Y. Tew, K. Wong, An overview of information hiding in H.264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol. 24(2), 305–319 (2014)

    Article  Google Scholar 

  30. H. Tian, Y. Zhao, R. Ni, L. Qin, X. Li, LDFT-based watermarking resilient to local desynchronization attacks. IEEE Trans. Cybern. 43(6), 2190–2201 (2013)

    Article  Google Scholar 

  31. M. Tomlinson, New automatic equalizer employing modulo arithmetic. Electron. Lett. 7(5), 138–139 (1971)

    Article  Google Scholar 

  32. H.-W. Tseng, H.-S. Leng, High-payload block-based data hiding scheme using hybrid edge detector with minimal distortion. IET Image Process. 8(11), 647–654 (2014)

    Article  Google Scholar 

  33. USC-SIPI Image Database. Available: http://sipi.usc.edu/database/database.cgi?volume=misc

  34. A. Valizadeh, Z.J. Wang, Correlation-and-bit-aware spread spectrum embedding for data hiding. IEEE Trans. Inf. Forensics Secur. 6(2), 267–282 (2011)

    Article  Google Scholar 

  35. Y. Wang, P. Moulin, Perfectly secure steganography: capacity, error exponents, and code constructions. IEEE Trans. Inf. Theory 54(6), 2706–2722 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Wei, D.A. Pados, S.N. Batalama, M.J. Medley, Sum-SINR/sum-capacity optimal multisignature spread-spectrum steganography, in Proceedings of SPIE, Mobile Multimedia/Image Processing, Security, and Applications Conference, SPIE Defense and Security Symposium, Orlando, FL, March 2008, vol. 6982, pp. 0D1–0D10

  37. X.G. Xia, C.G. Boncelet, G.R. Arce, A multiresolution watermark for digital images, in Proceedings IEEE International Conference on Image Processing (ICIP), Santa Barbara, CA, Oct. 1997, vol. 1, pp. 548–551

  38. Y. Yi, R. Li, F. Chen, A.X. Liu, Y. Lin, A digital watermarking approach to secure and precise range query processing in sensor networks, in Proceedings on IEEE INFOCOM, Turin, Italy, April 2013, pp. 1950–1958

  39. M. Zareian, H.R. Tohidypour, Robust quantisation index modulation-based approach for image watermarking. IET Image Process. 7(5), 432–441 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. DUT14RC(3)103), the Research Fund for the Doctoral Program of Liaoning Province (Grant No. 20131014), the National Natural Science Foundation of China (Grant No. 61402079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Appendix

Appendix

Proof of Proposition 2

With SS embedding signal (11), the output SINR of MF is

$$\begin{aligned} \mathrm {SINR}= & {} \frac{{\mathbb {E}} \{\Vert A b_i \Vert ^2 \}}{{\mathbb {E}} \left\{ \Vert \mathbf {s}^T ((\mathbf {I}_L - c\mathbf {s}\mathbf {s}^T)\mathbf {x}_i + \mathbf {n}) \Vert ^2 \right\} }\end{aligned}$$
(42)
$$\begin{aligned}= & {} \frac{\frac{3}{M^2-1} A^2}{\mathbf {s}^T \left( (\mathbf {I}_L - c\mathbf {s}\mathbf {s}^T) \mathbf {R}_{\mathrm { {x}}}(\mathbf {I}_L - c\mathbf {s}\mathbf {s}^T) + \sigma ^2_n \mathbf {I}\right) \mathbf {s}} \nonumber \\= & {} \frac{ \frac{3}{M^2-1} A^2}{\mathbf {s}^T \mathbf {R}_{\mathrm {{x}}} \mathbf {s} -2c\mathbf {s}^T\mathbf {R}_{\mathrm { {x}}}\mathbf {s} + c^2\mathbf {s}^T\mathbf {R}_{\mathrm { {x}}} \mathbf {s} + \sigma ^2_n} \nonumber \\= & {} \frac{\frac{3}{M^2-1} A^2}{\alpha -2 c \alpha + c^2\alpha + \sigma ^2_n} \end{aligned}$$
(43)

where we define \(\alpha \triangleq \mathbf {s}^T \mathbf {R}_{\mathrm { {x}}} \mathbf {s}\). By applying \({\mathcal {D}} =\frac{3}{M^2-1} A^2 + c^2 \mathbf {s}^T \mathbf {R}_{\mathrm { {x}}} \mathbf {s} = \frac{3}{M^2-1} A^2 + c^2 \alpha \) into (43), we obtain

$$\begin{aligned} \mathrm {SINR} = \frac{{\mathcal {D}} - c^2\alpha }{\alpha - 2 c \alpha + c^2 \alpha + \sigma ^2 } \end{aligned}$$
(44)

By direct differentiation of the (44) with respect to c and root selection, we obtain \(c^{\mathrm {opt}} = \frac{\alpha + \sigma _n^2 + {\mathcal {D}} - \sqrt{(\alpha + \sigma _n^2 + {\mathcal {D}} )^2 - 4\alpha {\mathcal {D}} } }{2 \alpha }\) in (14). With optimal transform parameter \(c^{\mathrm {opt}}\), the optimal amplitude \(A^{\mathrm {opt}}\) and the maximum SINR can be easily calculated.

The SINR in (44) is a monotonically decreasing function of \(\alpha \ge 0\). Therefore, the optimal carrier \(\mathbf {s}\), which minimizes \(\alpha \triangleq \mathbf {s}^T \mathbf {R}_{\mathrm { {x}}} \mathbf {s}\), is the eigenvector of \(\mathbf {R}_{\mathrm {x}}\) with minimum eigenvalue

$$\begin{aligned} \mathbf {s}^{\mathrm {opt}} = \mathbf {q}_L . \end{aligned}$$
(45)

With this optimal carrier, the identity of match filter and maximum SINR filter has be proved in Proposition 3 in [12]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, Q., Guo, Y. et al. Optimal M-PAM Spread-Spectrum Data Embedding with Precoding. Circuits Syst Signal Process 35, 1333–1353 (2016). https://doi.org/10.1007/s00034-015-0124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0124-3

Keywords

Navigation