Skip to main content
Log in

Mode-Dependent \(H_{\infty }\) Filtering for Stochastic Markovian Switching Genetic Regulatory Networks with Leakage and Time-Varying Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the \(H_{\infty }\) filtering problem is considered for Markovian switching genetic regulatory networks (GRNs) with mode-dependent leakage and time-varying delays along intrinsic molecular fluctuations and extrinsic molecular noises. The aim of this paper is to design a filter to estimate the true concentrations of mRNAs and proteins. By choosing suitable Lyapunov–Krasovskii functionals and reciprocally convex combination approach, sufficient conditions are obtained to ensure that the filtering error system is globally stochastically stable in the mean-square sense with the prescribed \(H_{\infty }\) disturbance attenuation levels. The existence of the designed \(H_{\infty }\) filters is expressed in terms of linear matrix inequalities (LMIs), which can be easily solved by using Matlab LMI toolbox. Also the corresponding results are obtained for the GRNs without leakage delays. Finally, two numerical examples are given, which include a repressilator model of Escherichia coli to illustrate the effectiveness of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Balasubramaniam, M. Kalpana, R. Rakkiyappan, Existence and global asymptotic stability of fuzzy cellular neural networks with time delay in the leakage term and unbounded distributed delays. Circuits Syst. Signal Process. 30, 1595–1616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Balasubramaniam, V. Vembarasan, R. Rakkiyappan, Leakage delays in T-S fuzzy cellular neural networks. Neural Process Lett. 33, 111–136 (2011)

  3. W.J. Blake, M. Kærn, C.R. Cantor, J.J. Collins, Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  4. H. Bolouri, E.H. Davidson, Modeling transcriptional regulatory networks. Bioessays 24, 1118–1129 (2002)

    Article  Google Scholar 

  5. L. Chen, K. Alihara, Stability of genetic regulatory networks with time delay. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 602–608 (2002)

    Article  Google Scholar 

  6. B. Chen, Y. Chang, A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises. BMC Syst. Biol. 2, 103 (2008)

    Article  Google Scholar 

  7. B. Chen, Y. Wang, On the attenuation and amplification of molecular noise in genetic regulatory networks. BMC Bioinform. 7, 52 (2006)

    Article  Google Scholar 

  8. B. Chen, L. Yu, W. Zhang, \(H_{\infty }\) filtering for Markovian switching genetic regulatory networks with time-delays and stochastic disturbances. Circuits Syst. Signal Process. 30, 1231–1252 (2011)

  9. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  10. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic, Dordrecht, 1992)

    Book  MATH  Google Scholar 

  11. K. Gu, An integral inequality in the stability problem of time delay systems, in Proceedings of the 39th IEEE Conference on Decision, Control (2000), pp. 2805–2810.

  12. Y. He, J. Zeng, M. Wu, C. Zhang, Robust stabilization and \(H_{\infty }\) controllers design for stochastic genetic regulatory networks with time-varying delays and structured uncertainties. Math. Biosci. 236, 53–63 (2012)

  13. J.H. Koo, D.H. Ji, S.C. Won, JuH Park, An improved robust delay-dependent stability criterion for genetic regulatory networks with interval time delays. Commun. Nonlinear Sci. Numer. Simul. 17, 3399–3405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Lakshmanan, JuH Park, H.Y. Jung, Robust delay-dependent stability criteria for dynamic systems with nonlinear perturbations and leakage delay. Circuits Syst. Signal Process. 32, 1637–1657 (2013)

    Article  MathSciNet  Google Scholar 

  15. T.H. Lee, S. Lakshmanan, JuH Park, P. Balasubramaniam, State estimation for genetic regulatory networks with mode-dependent leakage delays, time-varying delays, and Markovian jumping parameters. IEEE Trans. Nanobiosci. 12, 363–375 (2013)

  16. J. Lewis, Autoinhibition with transcriptional delay: a simple mechanism for the zebra fish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003)

    Article  Google Scholar 

  17. X. Li, J. Cao, Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 23, 1709–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Li, L. Chen, K. Aihara, Stability of genetic networks with sum regulatory logic: Lur’e system and LMI approach. IEEE Trans. Circuits Syst. I, Regul. Pap. 53, 2451–2458 (2006)

  19. X. Li, X. Fu, Effect of leakage time-varying delay on stability of nonlinear differential systems. J. Frankl. Inst. 350, 1335–1344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Liang, J. Han, Stochastic boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst. Biol. 6, 113 (2012)

    Article  MathSciNet  Google Scholar 

  21. J. Liang, J. Lam, Z. Wang, State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates. Phys. Lett. A. 373, 4328–4337 (2009)

  22. P. Liu, Robust stability analysis of genetic regulatory network with time delays. ISA Trans. 52, 326–334 (2013)

    Article  Google Scholar 

  23. J. Liu, E. Tian, Z. Gu, Y. Zhang, State estimation for Markovian jumping genetic regulatory networks with random delays. Commun. Nonlinear Sci. Numer. Simul. 19, 2479–2492 (2014)

  24. X. Lou, Q. Ye, B. Cui, Exponential stability of genetic regulatory networks with random delays. Neurocomputing 73, 759–769 (2010)

    Article  Google Scholar 

  25. B. Lv, J. Liang, J. Cao, Robust distributed state estimation for genetic regulatory networks with Markovian jumping parameters. Commun. Nonlinear Sci. Numer. Simul. 16, 4060–4078 (2011)

  26. M. Mohammadian, A.H. Abolmasoumi, H.R. Momeni, \(H_{\infty }\) mode-independent filter design for Markovian jump genetic regulatory networks with time-varying delays. Neurocomputing 87, 10–18 (2012)

  27. S.M. Mousavi, V.J. Majd, Robust filtering of extended stochastic genetic regulatory networks with parameter uncertainties, disturbances, and time-varying delays. Neurocomputing 74, 2123–2134 (2011)

    Article  Google Scholar 

  28. J.V. Oliveira, A.F. Brito, C.T. Braconi, C.C. Melo Freire, A. Lamarino, P.M. Andrade zanotto, Modularity and evolutionary constraints in a baculovirus gene regulatory network. BMC Syst. Biol. 7, 87 (2013)

    Article  Google Scholar 

  29. P.G. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Rakkiyappan, P. Balasubramaniam, K. Balachandran, Delay-dependent global asymptotic stability criteria for genetic regulatory networks with time delays in the leakage term. Phys. Scr. 84, 055007 (2011)

    Article  Google Scholar 

  31. F. Ren, J. Cao, Asymptotic and robust stability of genetic regulatory networks with time-varying delays. Neurocomputing 71, 834–842 (2006)

    Article  Google Scholar 

  32. P. Smolen, D.A. Baxter, J.H. Byrne, Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)

    Article  Google Scholar 

  33. L. Tian, J. Wang, F. Wu, Robust and global delay-dependent stability for genetic regulatory networks with parameter uncertainties. IEEE Trans. Nanobiosci. 11, 251–258 (2012)

    Article  Google Scholar 

  34. N.X. Vinh, M. Chetty, R. Coppel, P.P. Wangikar, Gene regulatory network modeling via global optimization of high-order dynamic bayesian network. BMC Bioinform. 13, 131 (2012)

    Article  Google Scholar 

  35. Z. Wang, J. Lam, G. Wei, K. Fraser, X. Liu, Filtering for nonlinear genetic regulatory networks with stochastic disturbances. IEEE Trans. Autom. Control. 53, 2448–2457 (2008)

    Article  MathSciNet  Google Scholar 

  36. Z. Wang, X. Liao, S. Guo, G. Liu, Stability analysis of genetic regulatory network with time delays and parameter uncertainties. IET Control Theory Appl. 4, 2018–2028 (2010)

    Article  MathSciNet  Google Scholar 

  37. Z. Wang, X. Liao, J. Mao, G. Liu, Robust stability of stochastic genetic regulatory networks with discrete and distributed delays. Soft Comput. 13, 1199–1208 (2009)

    Article  MATH  Google Scholar 

  38. Z. Wang, X. Liu, Y. Liu, J. Liang, V. Vinciotti, An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 410–419 (2009)

  39. W. Wang, S.K. Nguang, S. Zhong, F. Liu, Robust stability analysis of stochastic delayed genetic regulatory networks with polytopic uncertainties and linear fractional parametric uncertainties. Commun. Nonlinear Sci. Numer. Simul. 19, 1569–1581 (2014)

    Article  MathSciNet  Google Scholar 

  40. Y. Wang, Z. Wang, J. Liang, On robust stability of stochastic genetic regulatory networks with time delays: a delay fractioning approach. IEEE Trans. Syst. Man Cybern. B Cybern. 40, 729–740 (2010)

    Article  Google Scholar 

  41. W. Wang, S. Zhong, F. Liu, Robust filtering of uncertain stochastic genetic regulatory networks with time-varying delays. Chaos Solitons Fractals. 45, 915–929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Wang, S. Zhong, S.K. Nguang, F. Liu, Robust delay-probability-distribution-dependent stability of uncertain genetic regulatory networks with time-varying delays. Neurocomputing 119, 153–164 (2013)

    Article  Google Scholar 

  43. G. Wei, Z. Wang, J. Lam, K. Fraser, G.P. Rao, X. Liu, Robust filtering for stochastic genetic regulatory networks with time-varying delay. Math. Biosci. 220, 73–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Zhang, J. Fang, Y. Tang, Stochastic stability of Markovian jumping genetic regulatory networks with mixed time delays. Appl. Math. Comput. 217, 7210–7225 (2011)

  45. W. Zhang, Y. Tang, J. Fang, X. Wu, Stochastic stability of genetic regulatory networks with a finite set delay characterization. Chaos 22, 023106 (2012)

    Article  Google Scholar 

  46. X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode observer design for a class of switched linear systems. IEEE Trans. Autom. Sci. Eng. doi:10.1109/TASE.2013.2281466.

  47. X. Zhao, P. Shi, L. Zhang, Asynchronously switched control of a class of slowly switched linear systems. Syst. Control Lett. 61, 1151–1156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Zhao, L. Zhang, P. Shi, H.R. Karimi, Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits. IEEE Trans. Ind. Electron. 61, 4161–4170 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Editor-in-chief, Associate Editor, and anonymous reviewers for their valuable and encouraging comments and fruitful suggestions to improve the quality of the manuscript. This work was supported by UGC-BSR—Research fellowship in Mathematical Sciences—2012–2013 and HIR Project No. UM.C/625/1/HIR/MOHE/13 University of Malaya, Kuala Lumpur, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Appendix 1

Appendix 1

Proof of Theorem 1

Consider the Lyapunov–Krasovskii functional candidate for the system (10) as

$$\begin{aligned} V(t,e_{t},i)=\sum _{n=1}^{7} V_{n}(t,e_{t},i), \end{aligned}$$
(26)

where

$$\begin{aligned} V_{1}(t,e_{t},i)&= e_{m}^{T}(t)P_{1i}e_{m}(t)+e_{p}^{T}(t)P_{2i}e_{p}(t),\\ V_{2}(t,e_{t},i)&= \int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s+\int \limits _{t-h_{i}}^{t}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s\\&+ \, \bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-h}^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s\mathrm{d}\theta , \\ V_{3}(t,e_{t},i)&= \int \limits _{-\rho _{i}}^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta +\int \limits _{-h_{i}}^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{\theta }^{0}\int \limits _{t+\uplambda }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\uplambda \mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-h}^{0}\int \limits _{\theta }^{0}\int \limits _{t+\uplambda }^{t}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\uplambda \mathrm{d}\theta ,\\ V_{4}(t,e_{t},i)&= \int \limits _{t-\alpha \tau _{i}}^{t}e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s +\int \limits _{t-\tau _{i}}^{t-\alpha \tau _{i}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\\&+ \, \int \limits _{t-\beta \sigma _{i}}^{t}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s +\int \limits _{t-\sigma _{i}}^{t-\beta \sigma _{i}}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s\\&+ \, \int \limits _{t-\tau _{i}(t)}^{t}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s +\int \limits _{t-\sigma _{i}(t)}^{t}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s,\\ V_{5}(t,e_{t},i)&= \bar{\pi }\int \limits _{-\alpha \tau }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\tau }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\beta \sigma }^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\tau }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta , \\ V_{6}(t,e_{t},i)&= \tau \int \limits _{-\tau }^{0}\int \limits _{t+\theta }^{t}\dot{e}_{m}^{T}(s)K^{T}S_{1}K\dot{e}_{m}(s)\mathrm{d}s\mathrm{d}\theta +\sigma \int \limits _{-\sigma }^{0}\int \limits _{t+\theta }^{t}\dot{e}_{p}^{T}(s)K^{T}S_{2}K\dot{e}_{p}(s)\mathrm{d}s\mathrm{d}\theta ,\\ V_{7}(t,e_{t},i)&= \int \limits _{t-\sigma _{i}(t)}^{t}g^{T}(Ke_{p}(s))T_{1}g(Ke_{p}(s))\mathrm{d}s +\int \limits _{t-\sigma _{i}}^{t}g^{T}(Ke_{p}(s))T_{2}g(Ke_{p}(s))\mathrm{d}s\\&+ \, \bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{t+\theta }^{t}g^{T}(Ke_{p}(s))(T_{1}+T_{2})g(Ke_{p}(s))\mathrm{d}s\mathrm{d}\theta . \end{aligned}$$

Differentiating (26) stochastically using It\(\hat{o}\)’s formula, one can get

$$\begin{aligned} \mathrm{d}V(t,e_{t},i)&= \sum _{n=1}^{7}\mathcal {L}V_{n}(t,e_{t},i)\mathrm{d}t+2e_{m}^{T}(t)P_{1i}\bar{E}_{i}Ke_{m}(t)\mathrm{d}\omega _{1}(t) \nonumber \\&+ \, 2e_{p}^{T}(t)P_{2i}\bar{F}_{i}Ke_{p}(t)\mathrm{d}\omega _{2}(t), \end{aligned}$$
(27)

where

$$\begin{aligned} \mathcal {L}V_{1}(t,e_{t},i)&= 2e_{m}^{T}(t)P_{1i}[-\bar{A}_{i}e_{m}(t-\rho _{i})+\bar{B}_{i}g(Ke_{p}(t-\sigma _{i}(t)))] \nonumber \\&+ \, e_{m}^{T}(t)\Big [\sum _{j=1}^{N}\pi _{ij}P_{1j}\Big ] e_{m}(t)+e_{m}^{T}(t)K^{T}\bar{E}_{i}^{T}P_{1i}\bar{E}_{i}Ke_{m}(t)+2e_{p}^{T}(t)P_{2i}\nonumber \\&\times [-\bar{C}_{i}e_{p}(t-h_{i}) +\bar{D}_{i}Ke_{m}(t-\tau _{i}(t))]+e_{p}^{T}(t)\Big [\sum _{j=1}^{N}\pi _{ij}P_{2j}\Big ]e_{p}(t)\nonumber \\&+ \, e_{p}^{T}(t)K^{T}\bar{F}_{i}^{T}P_{2i}\bar{F}_{i}Ke_{p}(t), \end{aligned}$$
(28)
$$\begin{aligned} \mathcal {L}V_{2}(t,e_{t},i)&= e_{m}^{T}(t)Q_{1}e_{m}(t)-e_{m}^{T}(t-\rho _{i})Q_{1}e_{m}(t-\rho _{i}) +e_{p}^{T}(t)Q_{2}e_{p}(t)-e_{p}^{T}(t-h_{i})\nonumber \\&\times Q_{2}e_{p}(t-h_{i}) +\sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\rho _{j}}^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s\nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-h_{j}}^{t}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s +\bar{\pi }\rho e_{m}^{T}(t)Q_{1}e_{m}(t)\nonumber \\&- \, \bar{\pi }\int \limits _{t-\rho }^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s +\bar{\pi }h e_{p}^{T}(t)Q_{2}e_{p}(t) -\bar{\pi }\int \limits _{t-h}^{t}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s\nonumber \\&\le e_{m}^{T}(t)Q_{1}e_{m}(t)-e_{m}^{T}(t-\rho _{i})Q_{1}e_{m}(t-\rho _{i}) +e_{p}^{T}(t)Q_{2}e_{p}(t)\nonumber \\&- \, e_{p}^{T}(t-h_{i})Q_{2}e_{p}(t-h_{i})+\bar{\pi }\rho e_{m}^{T}(t)Q_{1}e_{m}(t)+\bar{\pi }h e_{p}^{T}(t)Q_{2}e_{p}(t),\nonumber \\ \end{aligned}$$
(29)
$$\begin{aligned} \mathcal {L}V_{3}(t,e_{t},i)&= \rho _{i}e_{m}^{T}(t)Q_{3}e_{m}(t) -\int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s+h_{i}e_{p}^{T}(t)Q_{4}e_{p}(t)\nonumber \\&- \, \int \limits _{t-h_{i}}^{t}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s +\bar{\pi }\frac{\rho ^{2}}{2}e_{m}^{T}(t)Q_{3}e_{m}(t)\nonumber \\&- \, \bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\frac{h^{2}}{2}e_{p}^{T}(t)Q_{4}e_{p}(t)\nonumber \\&- \, \bar{\pi }\int \limits _{-h}^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\theta +\sum _{j=1}^{N}\pi _{ij}\int \limits _{-\rho _{j}}^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta \nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{-h_{j}}^{0}\int \limits _{t+\theta }^{t}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\theta \nonumber \\&\le e_{m}^{T}(t)(\rho _{i}+\bar{\pi }\frac{\rho ^{2}}{2})Q_{3}e_{m}(t) -\frac{1}{\rho _{i}}\Big [\int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)\mathrm{d}s\Big ]Q_{3}\Big [\int \limits _{t-\rho _{i}}^{t}e_{m}(s)\mathrm{d}s\Big ] \nonumber \\&+ \, e_{p}^{T}(t)(h_{i}+\bar{\pi }\frac{h^{2}}{2})Q_{4}e_{p}(t) -\frac{1}{h_{i}}\Big [\int \limits _{t-h_{i}}^{t}e_{p}^{T}(s)\mathrm{d}s\Big ]Q_{4}\Big [\int \limits _{t-h_{i}}^{t}e_{p}(s)\mathrm{d}s\Big ], \nonumber \\ \end{aligned}$$
(30)
$$\begin{aligned} \mathcal {L}V_{4}(t,e_{t},i)&\le e_{m}^{T}(t)K^{T}R_{1}Ke_{m}(t)-e_{m}^{T}(t-\alpha \tau _{i})K^{T}R_{1}Ke_{m}(t-\alpha \tau _{i}) \nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\alpha \tau _{j}}^{t}e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s +e_{m}^{T}(t-\alpha \tau _{i})K^{T}R_{2}Ke_{m}(t-\alpha \tau _{i}) \nonumber \\&- \, e_{m}^{T}(t-\tau _{i})K^{T}R_{2}Ke_{m}(t-\tau _{i}) +\sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\tau _{j}}^{t-\alpha \tau _{j}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s \nonumber \\&+ \, e_{p}^{T}(t)K^{T}R_{3}Ke_{p}(t)-e_{p}^{T}(t-\beta \sigma _{i})K^{T}R_{3}Ke_{p}(t-\beta \sigma _{i}) \nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\beta \sigma _{j}}^{t}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s +e_{p}^{T}(t-\beta \sigma _{i})K^{T}R_{4}Ke_{p}(t-\beta \sigma _{i})\nonumber \\&- \, e_{p}^{T}(t-\sigma _{i})K^{T}R_{4}Ke_{p}(t-\sigma _{i}) +\sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\sigma _{j}}^{t-\beta \sigma _{j}}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s \nonumber \\&+ \, e_{m}^{T}(t)K^{T}R_{5}Ke_{m}(t)-(1-\mu _{1i})e_{m}^{T}(t-\tau _{i}(t))K^{T}R_{5}Ke_{m}(t-\tau _{i}(t))\nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\tau _{j}(t)}^{t}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s+e_{p}^{T}(t)K^{T}R_{6}Ke_{p}(t) -(1-\mu _{2i})\nonumber \\&\,\, \times e_{p}^{T}(t-\sigma _{i}(t))K^{T}R_{6}Ke_{p}(t-\sigma _{i}(t))\nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\sigma _{j}(t)}^{t}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s, \end{aligned}$$
(31)
$$\begin{aligned} \mathcal {L}V_{5}(t,e_{t},i)&= \bar{\pi }\alpha \tau e_{m}^{T}(t)K^{T}R_{1}Ke_{m}(t)-\bar{\pi }\int \limits _{t-\alpha \tau }^{t} e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s +\bar{\pi }\tau e_{m}^{T}(t)K^{T}\nonumber \\&\times R_{2}Ke_{m}(t)-\bar{\pi }\int \limits _{t-\tau }^{t}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s +\bar{\pi }\beta \sigma e_{p}^{T}(t)K^{T}R_{3}Ke_{p}(t)\nonumber \\&- \, \bar{\pi }\int \limits _{t-\beta \sigma }^{t}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s+\bar{\pi }\sigma e_{p}^{T}(t)K^{T}R_{4}Ke_{p}(t) \nonumber \\&- \, \bar{\pi }\int \limits _{t-\sigma }^{t}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s+\bar{\pi }\tau e_{m}^{T}(t)K^{T}R_{5}Ke_{m}(t) \nonumber \\&- \, \bar{\pi }\int \limits _{t-\tau }^{t}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s +\bar{\pi }\sigma e_{p}^{T}(t)K^{T}R_{6}Ke_{p}(t)\nonumber \\&- \, \bar{\pi }\int \limits _{t-\sigma }^{t}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s, \end{aligned}$$
(32)
$$\begin{aligned} \mathcal {L}V_{6}(t,e_{t},i)&= \tau ^{2}\dot{e}_{m}^{T}(t)K^{T}S_{1}K\dot{e}_{m}(t) {-}\tau \int \limits _{t{-}\tau }^{t}\dot{e}_{m}^{T}(s)K^{T}S_{1}K\dot{e}_{m}(s)\mathrm{d}s\nonumber \\&{+} \, \sigma ^{2}\dot{e}_{p}^{T}(t)K^{T}S_{2}K\dot{e}_{p}(t) {-}\sigma \int \limits _{t{-}\sigma }^{t}\dot{e}_{p}^{T}(s)K^{T}S_{2}K\dot{e}_{p}(s)\mathrm{d}s\nonumber \\&\le \tau ^{2}\dot{e}_{m}^{T}(t)K^{T}S_{1}K\dot{e}_{m}(t) {-}\tau _{i}\int \limits _{t{-}\tau _{i}}^{t{-}\tau _{i}(t)}\dot{e}_{m}^{T}(s)K^{T}S_{1}K\dot{e}_{m}(s)\mathrm{d}s\nonumber \\&{-} \, \tau _{i}\int \limits _{t{-}\tau _{i}(t)}^{t}\dot{e}_{m}^{T}(s)K^{T} S_{1}K\dot{e}_{m}(s)\mathrm{d}s{+}\sigma ^{2}\dot{e}_{p}^{T}(t)K^{T}S_{2}K\dot{e}_{p}(t)\nonumber \\&{-} \, \sigma _{i}\int \limits _{t{-}\sigma _{i}}^{t{-}\sigma _{i}(t)}\dot{e}_{p}^{T}(s)K^{T}S_{2}K\dot{e}_{p}(s)\mathrm{d}s {-}\sigma _{i}\int \limits _{t{-}\sigma _{i}(t)}^{t}\dot{e}_{p}^{T}(s)K^{T}S_{2}K\dot{e}_{p}(s)\mathrm{d}s\nonumber \\&\le \tau ^{2}\dot{e}_{m}^{T}(t)K^{T}S_{1}K\dot{e}_{m}(t) -\frac{\tau _{i}}{\tau _{i}-\tau _{i}(t)}\left[ e_{m}^{T}(t-\tau _{i}(t))K^{T}-e_{m}^{T}(t-\tau _{i})K^{T}\right] S_{1}\nonumber \\&\times [Ke_{m}(t-\tau _{i}(t))-Ke_{m}(t-\tau _{i})]-\frac{\tau _{i}}{\tau _{i}(t)}\left[ e_{m}^{T}(t)K^{T} -e_{m}^{T}(t-\tau _{i}(t))K^{T}\right] \nonumber \\&\times S_{1}[Ke_{m}(t)-Ke_{m}(t-\tau _{i}(t))] +\sigma ^{2}\dot{e}_{p}^{T}(t)K^{T}S_{2}K\dot{e}_{p}(t)-\frac{\sigma _{i}}{\sigma _{i}-\sigma _{i}(t)}\nonumber \\&\times \left[ e_{p}^{T}(t-\sigma _{i}(t))K^{T}-e_{p}^{T}(t-\sigma _{i})K^{T}\right] S_{2}[Ke_{p}(t-\sigma _{i}(t))-Ke_{p}(t-\sigma _{i})]\nonumber \\&- \, \frac{\sigma _{i}}{\sigma _{i}(t)}\left[ e_{p}^{T}(t)K^{T}-e_{p}^{T}(t-\sigma _{i}(t))K^{T}\right] S_{2}[Ke_{p}(t)-Ke_{p}(t-\sigma _{i}(t))]\end{aligned}$$
(33)
$$\begin{aligned}&\le \tau ^{2}\dot{e}_{m}^{T}(t)K^{T}S_{1}K\dot{e}_{m}(t) -\left[ \begin{array}{c} Ke_{m}(t-\tau _{i}(t))-Ke_{m}(t-\tau _{i})\\ Ke_{m}(t)-Ke_{m}(t-\tau _{i}(t)) \end{array}\right] ^{T}\ \nonumber \\&\times \left[ \begin{array}{cc} V_{1}&{}W_{1}\\ W_{1}^{T}&{}V_{1} \end{array}\right] \ \left[ \begin{array}{c} Ke_{m}(t-\tau _{i}(t))-Ke_{m}(t-\tau _{i})\\ Ke_{m}(t)-Ke_{m}(t-\tau _{i}(t)) \end{array}\right] \nonumber \\&+ \, \sigma ^{2}\dot{e}_{p}^{T}(t)K^{T}S_{2}K\dot{e}_{p}(t) -\left[ \begin{array}{c} Ke_{p}(t-\sigma _{i}(t))-Ke_{p}(t-\sigma _{i})\\ Ke_{p}(t)-Ke_{p}(t-\sigma _{i}(t)) \end{array}\right] ^{T}\ \nonumber \\&\times \left[ \begin{array}{cc} V_{2}&{}W_{2}\\ W_{2}^{T}&{}V_{2} \end{array}\right] \ \left[ \begin{array}{c} Ke_{p}(t-\sigma _{i}(t))-Ke_{p}(t-\sigma _{i})\\ Ke_{p}(t)-Ke_{p}(t-\sigma _{i}(t)) \end{array}\right] ,\ \end{aligned}$$
(34)

where the inequalities in (33) derived from Lemma 2 and that of (34) derived from Lemma 1 are described by

$$\begin{aligned}&- \left[ \begin{array}{c} \sqrt{\frac{\beta _{1}}{\alpha _{1}}}[Ke_{m}(t-\tau _{i}(t))-Ke_{m}(t-\tau _{i})]\\ -\sqrt{\frac{\alpha _{1}}{\beta _{1}}}[Ke_{m}(t)-Ke_{m}(t-\tau _{i}(t))] \end{array}\right] ^{T}\ \left[ \begin{array}{cc} V_{1}&{}W_{1}\\ W_{1}^{T}&{}V_{1} \end{array}\right] \\&\quad \quad \times \left[ \begin{array}{c} \sqrt{\frac{\beta _{1}}{\alpha _{1}}}[Ke_{m}(t-\tau _{i}(t))-Ke_{m}(t-\tau _{i})]\\ -\sqrt{\frac{\alpha _{1}}{\beta _{1}}}[Ke_{m}(t)-Ke_{m}(t-\tau _{i}(t))] \end{array}\right] \le 0, \end{aligned}$$

where \(\alpha _{1}=\frac{\tau _{i}-\tau _{i}(t)}{\tau _{i}}\) and \(\beta _{1}=\frac{\tau _{i}(t)}{\tau _{i}}\). Note that when \(\tau _{i}(t)=\tau _{i}\) or \(\tau _{i}(t)=0\), one can obtain

\(\left[ e_{m}^{T}(t-\tau _{i}(t))K^{T}-e_{m}^{T}(t-\tau _{i})K^{T}\right] =0\) or \(\left[ e_{m}^{T}(t)K^{T}-e_{m}^{T}(t-\tau _{i}(t))K^{T}\right] =0\),

and

$$\begin{aligned}&- \left[ \begin{array}{c} \sqrt{\frac{\beta _{2}}{\alpha _{2}}}[Ke_{p}(t-\sigma _{i}(t))-Ke_{p}(t-\sigma _{i})]\\ -\sqrt{\frac{\alpha _{2}}{\beta _{2}}}[Ke_{p}(t)-Ke_{p}(t-\sigma _{i}(t))] \end{array}\right] ^{T}\ \left[ \begin{array}{c@{\quad }c} V_{2}&{}W_{2}\\ W_{2}^{T}&{}V_{2} \end{array}\right] \\&\quad \quad \times \left[ \begin{array}{c} \sqrt{\frac{\beta _{2}}{\alpha _{2}}}[Ke_{p}(t-\sigma _{i}(t))-Ke_{p}(t-\sigma _{i})]\\ -\sqrt{\frac{\alpha _{2}}{\beta _{2}}}[Ke_{p}(t)-Ke_{p}(t-\sigma _{i}(t))] \end{array}\right] \le 0, \end{aligned}$$

where \(\alpha _{2}=\frac{\sigma _{i}-\sigma _{i}(t)}{\sigma _{i}}\) and \(\beta _{2}=\frac{\sigma _{i}(t)}{\sigma _{i}}\). Note that when \(\sigma _{i}(t)=\sigma _{i}\) or \(\sigma _{i}(t)=0\), one can obtain

\(\left[ e_{p}^{T}(t-\sigma _{i}(t))K^{T}-e_{p}^{T}(t-\sigma _{i})K^{T}\right] =0\) or \(\left[ e_{p}^{T}(t)K^{T}-e_{p}^{T}(t-\sigma _{i}(t))K^{T}\right] =0\).

$$\begin{aligned} \mathcal {L}V_{7}(t,e_{t},i)&\le g^{T}(Ke_{p}(t))T_{1}g(Ke_{p}(t)) -(1-\mu _{1i})g^{T}(Ke_{p}(t-\sigma _{i}(t)))T_{1}\nonumber \\&\times g(Ke_{p}(t-\sigma _{i}(t)))+g^{T}(Ke_{p}(t))T_{2}g(Ke_{p}(t)) -g^{T}(Ke_{p}(t-\sigma _{i}))T_{2}\nonumber \\&\times g(Ke_{p}(t-\sigma _{i}))+\bar{\pi }\sigma g^{T}(Ke_{p}(t))(T_{1}+T_{2})g(Ke_{p}(t))\nonumber \\&- \, \bar{\pi }\int \limits _{t-\sigma }^{t}g^{T}(Ke_{p}(s))(T_{1}+T_{2})g(Ke_{p}(s))\mathrm{d}s\nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\sigma _{j}(t)}^{t}g^{T}(Ke_{p}(s))T_{1}g(Ke_{p}(s))\mathrm{d}s\nonumber \\&+ \, \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\sigma _{j}}^{t}g^{T}(Ke_{p}(s))T_{2}g(Ke_{p}(s))\mathrm{d}s \nonumber \\&\le e_{p}^{T}(t)K^{T}L^{T}T_{1}LKe_{p}(t) -(1-\mu _{1i})g^{T}(Ke_{p}(t-\sigma _{i}(t)))T_{1}g(Ke_{p}(t\nonumber \\&- \, \sigma _{i}(t))) +e_{p}^{T}(t)K^{T}L^{T}T_{2}LKe_{p}(t)) -g^{T}(Ke_{p}(t-\sigma _{i}))T_{2}g(Ke_{p}(t-\sigma _{i}))\nonumber \\&+ \, \bar{\pi }\sigma e_{p}^{T}(t)K^{T}L^{T}(T_{1}+T_{2})LKe_{p}(t). \end{aligned}$$
(35)

By using upper and lower bound of time-varying delays and \(\pi _{ii}\,\le \,0\), the following relationship holds.

$$\begin{aligned} \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\rho _{j}}^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s&= \sum _{j\ne i}\pi _{ij}\int \limits _{t-\rho _{j}}^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s\nonumber \\&+ \, \pi _{ii}\int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s \nonumber \\&\le \bar{\pi }\int \limits _{t-\rho }^{t}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s, \end{aligned}$$
(36)
$$\begin{aligned} \sum _{j=1}^{N}\pi _{ij}\int \limits _{-\rho _{j}}^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta&= \sum _{j\ne i}\pi _{ij}\int \limits _{-\rho _{j}}^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta \nonumber \\&+ \, \pi _{ii}\int \limits _{-\rho _{j}}^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta \nonumber \\&\le \bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{t+\theta }^{t}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta , \end{aligned}$$
(37)
$$\begin{aligned} \sum _{j=1}^{N}\pi _{ij}\int \limits _{t-\tau _{j}}^{t-\alpha \tau _{j}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s&= \sum _{j\ne i}\pi _{ij}\int \limits _{t-\tau _{j}}^{t-\alpha \tau _{j}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\nonumber \\&+ \, \pi _{ii}\int \limits _{t-\tau _{j}}^{t-\alpha \tau _{j}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\nonumber \\&\le \bar{\pi }\int \limits _{t-\tau }^{t}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\nonumber \\&+ \, \pi _{ii}\int \limits _{t-\tau _{j}}^{t-\alpha \tau _{j}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\nonumber \\&\le \bar{\pi }\int \limits _{t-\tau }^{t}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s. \end{aligned}$$
(38)

Hence (29), (30), and (35) are obtained from the relationship (36)–(38). Therefore, from (27)–(32), (34), and (35), one can obtain

$$\begin{aligned} E\{\mathcal {L}V(t,e_{t},i)\}&\le \zeta ^{T}(t)\Sigma ^{i}\zeta (t), \end{aligned}$$
(39)

where

$$\begin{aligned} \zeta ^{T}(t)&= \left[ e_{m}^{T}(t)\ \ \ e_{p}^{T}(t)\ \ \ e_{m}^{T}(t-\rho _{i})\ \ \ e_{p}^{T}(t-h_{i})\ \ \ e_{m}^{T}(t-\alpha \tau _{i})K^{T}\ \ \ e_{m}^{T}(t-\tau _{i})K^{T}\right. \\&e_{p}^{T}(t-\beta \sigma _{i})K^{T}\ \ \ e_{p}^{T}(t-\sigma _{i})K^{T}\ \ \ e_{m}^{T}(t-\tau _{i}(t))K^{T}\ \ \ e_{p}^{T}(t-\sigma _{i}(t))K^{T}\\&\left. \int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)\mathrm{d}s\ \ \ \int \limits _{t-h_{i}}^{t}e_{p}^{T}(s)\mathrm{d}s\ \ \ g^{T}(Ke_{p}(t-\sigma _{i}(t)))\ \ \ g^{T}(Ke_{p}(t-\sigma _{i}))\right] , \end{aligned}$$

and \(\Sigma ^{i}\) is defined in (12).

Now, we show that the filtering error system (10) with \(\nu _{1}(t)\,=\,\nu _{2}(t)=0\) is globally stochastically stable in the mean-square sense.

If \(\nu _{1}(t)\,=\,\nu _{2}(t)=0\), we can conclude from (12) that \(\Sigma ^{i}\,<\,0\), which implies that

$$\begin{aligned} E\{\mathcal {L}V(t,e_{t},i)\}\le \zeta ^{T}(t)\Sigma ^{i}\zeta (t)<0. \end{aligned}$$
(40)

Thus, from (40), we have

$$\begin{aligned} E\{\mathcal {L}V(t,e_{t},i)\}\le -\alpha _{1}E\{\parallel e_{m}(t) \parallel ^{2}+\parallel e_{p}(t) \parallel ^{2}\}, \end{aligned}$$
(41)

where \(\alpha _{1}\ =\min _{i\in S}\{\uplambda _{min}(-\Sigma ^{i})\}>0\). Integrating both sides of (41) from 0 to \(t\), we have by Dynkin’s formula,

$$\begin{aligned} E\{V(t,e_{t},i)\}\le -\alpha _{1}\int \limits _{0}^{t}E\{\parallel e_{m}(s)\parallel ^{2}+\parallel e_{p}(s)\parallel ^{2}\}\mathrm{d}s +E\{V(0,e_{0},i)\}. \end{aligned}$$
(42)

From the definition of (26), we have

$$\begin{aligned} E\{V(t,e_{t},i)\}\ge \alpha _{2}E\{\parallel e_{m}(t) \parallel ^{2}+\parallel e_{p}(t) \parallel ^{2}\}, \end{aligned}$$
(43)

where \(\alpha _{2}\ =\min _{i\in S}\{\uplambda _{\mathrm{{min}}}(P_{1i}+P_{2i})\}>0\). Inequalities (42) and (43) imply that

$$\begin{aligned} \lim _{t\rightarrow \infty }\int \limits _{0}^{t}E\{\parallel e_{m}(t) \parallel ^{2}+\parallel e_{p}(t) \parallel ^{2}\}\mathrm{d}s&\le k_{2}k_{1}^{-1}E\{V(0,e_{0},i)\}<\infty , \end{aligned}$$
(44)

where \(k_{1}=\alpha _{1}\alpha _{2}^{-1}\), \(k_{2}=\alpha _{2}^{-1}\), and

$$\begin{aligned} E\{V(0,e_{0},i)\}&= E\Big \{e_{m}^{T}(0)P_{1i}e_{m}(0)+e_{p}^{T}(0)P_{2i}e_{p}(0)+\int \limits _{-\rho _{i}}^{0}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s\\&+ \, \int \limits _{-h_{i}}^{0}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s +\bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{\theta }^{0}e_{m}^{T}(s)Q_{1}e_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-h}^{0}\int \limits _{\theta }^{0}e_{p}^{T}(s)Q_{2}e_{p}(s)\mathrm{d}s\mathrm{d}\theta +\int \limits _{-\rho _{i}}^{0}\int \limits _{\theta }^{0}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \int \limits _{-h_{i}}^{0}\int \limits _{\theta }^{0}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\rho }^{0}\int \limits _{\theta }^{0}\int \limits _{\uplambda }^{0}e_{m}^{T}(s)Q_{3}e_{m}(s)\mathrm{d}s\mathrm{d}\uplambda \mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-h}^{0}\int \limits _{\theta }^{0}\int \limits _{\uplambda }^{0}e_{p}^{T}(s)Q_{4}e_{p}(s)\mathrm{d}s\mathrm{d}\uplambda \mathrm{d}\theta +\int \limits _{-\alpha \tau _{i}}^{0}e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s\\&+ \, \int \limits _{-\tau _{i}}^{-\alpha \tau _{i}}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s +\int \limits _{-\beta \sigma _{i}}^{0}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s \\&+ \, \int \limits _{-\sigma _{i}}^{-\beta \sigma _{i}}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s +\int \limits _{-\tau _{i}(0)}^{0}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s \\&+ \, \int \limits _{-\sigma _{i}(0)}^{0}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s +\bar{\pi }\int \limits _{-\alpha \tau }^{0}\int \limits _{\theta }^{0}e_{m}^{T}(s)K^{T}R_{1}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\tau }^{0}\int \limits _{\theta }^{0}e_{m}^{T}(s)K^{T}R_{2}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\beta \sigma }^{0}\int \limits _{\theta }^{0}e_{p}^{T}(s)K^{T}R_{3}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{\theta }^{0}e_{p}^{T}(s)K^{T}R_{4}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta +\bar{\pi }\int \limits _{-\tau }^{0}\int \limits _{\theta }^{0}e_{m}^{T}(s)K^{T}R_{5}Ke_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{\theta }^{0}e_{p}^{T}(s)K^{T}R_{6}Ke_{p}(s)\mathrm{d}s\mathrm{d}\theta +\tau \int \limits _{-\tau }^{0}\int \limits _{\theta }^{0}\dot{e}_{m}^{T}(s)K^{T}S_{1}K\dot{e}_{m}(s)\mathrm{d}s\mathrm{d}\theta \\&+ \, \sigma \int \limits _{-\sigma }^{0}\int \limits _{\theta }^{0}\dot{e}_{p}^{T}(s)K^{T}S_{2}K\dot{e}_{p}(s)\mathrm{d}s\mathrm{d}\theta +\int \limits _{-\sigma _{i}(0)}^{0}g^{T}(Ke_{p}(s))T_{1}g(Ke_{p}(s))\mathrm{d}s\\&+ \, \int \limits _{-\sigma _{i}}^{0}g^{T}(Ke_{p}(s))T_{2}g(Ke_{p}(s))\mathrm{d}s +\bar{\pi }\int \limits _{-\sigma }^{0}\int \limits _{\theta }^{0}g^{T}(Ke_{p}(s))(T_{1}+T_{2})g(Ke_{p}(s))\mathrm{d}s\mathrm{d}\theta \Big \}\\&\le \{\uplambda _{\mathrm{{max}}}(P_{1i})+(\rho _{i}+\bar{\pi }\rho ^{2})\uplambda _{\mathrm{{max}}}(Q_{1})+(\rho _{i}^{2} +\bar{\pi }\rho ^{3})\uplambda _{\mathrm{{max}}}(Q_{3}) +(\alpha \tau _{i}+\bar{\pi }\alpha ^{2}\tau ^{2})\\&\times \uplambda _{\mathrm{{max}}}(R_{1})+((\tau _{i}-\alpha \tau _{i})+\bar{\pi }\tau ^{2})\uplambda _{\mathrm{{max}}}(R_{2}) +(\tau _{i}+\bar{\pi }\tau ^{2})\uplambda _{\mathrm{{max}}}(R_{5})\\&+ \, \tau ^{3}\uplambda _{\mathrm{{max}}}(S_{1})\} E\{\parallel \chi _{m}(t)\parallel _{\tau ^{*}}^{2}\}+ \{\uplambda _{\mathrm{{max}}}(P_{2i})+(h_{i}+\bar{\pi }h^{2})\uplambda _{\mathrm{{max}}}(Q_{2})+(h_{i}^{2} +\bar{\pi }h^{3})\\&\times \uplambda _{\mathrm{{max}}}(Q_{4}) +(\beta \sigma _{i}+\bar{\pi }\beta ^{2}\sigma ^{2})\uplambda _{\mathrm{{max}}}(R_{3}) +((\sigma _{i}-\beta \sigma _{i})+\bar{\pi }\sigma ^{2})\uplambda _{\mathrm{{max}}}(R_{4})\\&+ \, (\sigma _{i}+\bar{\pi }\sigma ^{2})\uplambda _{\mathrm{{max}}}(R_{6})+\sigma ^{3}\uplambda _{\mathrm{{max}}}(S_{2}) +\sigma _{i}\mathrm{{max}}_{j\in \Lambda } L_{j}^{2}\uplambda _{\mathrm{{max}}}(T_{1}+T_{2})\\&+ \, \bar{\pi }\sigma ^{2}\mathrm{{max}}_{j\in \Lambda } L_{j}^{2}\uplambda _{\mathrm{{max}}}(T_{1}+T_{2})\} E\{\parallel \chi _{p}(t)\parallel _{\sigma ^{*}}^{2}\}<\infty . \end{aligned}$$

This implies that the trivial solution of (10) is locally stable.

Considering the continuity of the function \(g(\cdot )\), the solutions \(e_{m}(t)\) and \(e_{p}(t)\) of system (10) are bounded on \([0,\infty )\). The uniform boundedness of solutions of (10) implies that the derivatives of the solutions of (10) are bounded on \([0,\infty )\), which lead to the uniform continuity of solutions \(e_{m}(t)\) and \(e_{p}(t)\) on \([0,\infty )\). By Barbalat’s lemma, we have

$$\begin{aligned} \lim _{t\rightarrow \infty }E\{\parallel e_{m}(t) \parallel ^{2}+\parallel e_{p}(t) \parallel ^{2}\}=0. \end{aligned}$$

Thus, the filtering error system (10) with \(\nu _{1}(t)=\nu _{2}(t)=0\) is globally stochastically stable in the mean-square sense by Definition 1. This completes the proof. \(\square \)

1.1 Appendix 2

Proof of Theorem 2

Choose the same Lyapunov–Krasovskii functional candidate as in (26) for the filtering error system (10) and employing the similar approach as in Theorem 1 (with \(\nu _{1}(t)\ne 0,\,\nu _{2}(t)\ne 0\)), by using the weak infinitesimal operator \(\mathcal {L}\), the stochastic differential of \(V(t,e_{t},i)\) is given by

$$\begin{aligned} \mathcal {L}V(t,e_{t},i)&= \zeta ^{T}(t)\Sigma ^{i}\zeta (t)+2e_{m}^{T}(t)P_{1i}\bar{M}_{i}\nu _{1}(t)+ 2e_{p}^{T}(t)P_{2i}\bar{N}_{i}\nu _{2}(t)+2e_{m}^{T}(t-\rho _{i})\nonumber \\&(-\tau ^{2}\bar{A}_{i}^{T}K^{T}S_{1}K\bar{M}_{i})\nu _{1}(t) +2g^{T}(Ke_{p}(t-\sigma _{i}(t))(\tau ^{2}\bar{B}_{i}^{T}K^{T}S_{1}K\bar{M}_{i})\nu _{1}(t)\nonumber \\&+ \, \nu _{1}^{T}(t)(\tau ^{2}\bar{M}_{i}^{T}K^{T}S_{1}K\bar{M}_{i})\nu _{1}(t) +2e_{p}^{T}(t-h_{i})(-\sigma ^{2}\bar{C}_{i}^{T}K^{T}S_{2}K\bar{N}_{i})\nu _{2}(t)\nonumber \\&+ \, 2e_{m}^{T}(t-\tau _{i}(t))K^{T}(\sigma ^{2}\bar{D}_{i}^{T}K^{T}S_{2}K\bar{N}_{i})\nu _{2}(t)\nonumber \\&+ \, \nu _{2}^{T}(t)(\sigma ^{2}\bar{N}_{i}^{T}K^{T}S_{2}K\bar{N}_{i})\nu _{2}(t). \end{aligned}$$
(45)

Next, we shall deal with the \(H_{\infty }\) performance for the filtering error system (10). Let us define

$$\begin{aligned} J(T)=E\Big \{\int \limits _{0}^{T}[\tilde{z}_{m}^{T}(t)\tilde{z}_{m}(t)-\gamma _{1}^{2}\nu _{1}^{T}(t)\nu _{1}(t) +\tilde{z}_{p}^{T}(t)\tilde{z}_{p}(t)-\gamma _{2}^{2}\nu _{2}^{T}(t)\nu _{2}(t)]\mathrm{d}t\Big \}\nonumber \\ \end{aligned}$$
(46)

for any nonzero \(\nu _{1}(t),\,\nu _{2}(t)\in L_{2}[0,\,\infty )\). From the zero initial conditions, we have

$$\begin{aligned} J(T)&= E\Big \{\int \limits _{0}^{T}[\tilde{z}_{m}^{T}(t)\tilde{z}_{m}(t)-\gamma _{1}^{2}\nu _{1}^{T}(t)\nu _{1}(t) +\tilde{z}_{p}^{T}(t)\tilde{z}_{p}(t)-\gamma _{2}^{2}\nu _{2}^{T}(t)\nu _{2}(t)\nonumber \\&+ \, \mathcal {L}V(t,e_{t},i)]\mathrm{d}t\Big \}-V(T,e_{T},i) \nonumber \\&\le E\Big \{\int \limits _{0}^{T}[\tilde{z}_{m}^{T}(t)\tilde{z}_{m}(t)-\gamma _{1}^{2}\nu _{1}^{T}(t)\nu _{1}(t) +\tilde{z}_{p}^{T}(t)\tilde{z}_{p}(t)-\gamma _{2}^{2}\nu _{2}^{T}(t)\nu _{2}(t)\nonumber \\&+ \, \mathcal {L}V(t,e_{t},i)]\mathrm{d}t\Big \}\nonumber \\&= E\Big \{\eta ^{T}(t)\varOmega ^{i}\eta (t)\mathrm{d}t\Big \}, \end{aligned}$$
(47)

where

$$\begin{aligned}&\eta ^{T}(t)=[e_{m}^{T}(t) \quad e_{p}^{T}(t) \quad e_{m}^{T}(t-\rho _{i})\quad e_{p}^{T}(t-h_{i}) \quad e_{m}^{T}(t-\alpha \tau _{i})K^{T} \quad e_{m}^{T}(t-\tau _{i})K^{T}\\&e_{p}^{T}(t-\beta \sigma _{i})K^{T} \quad e_{p}^{T}(t-\sigma _{i})K^{T}\quad e_{m}^{T}(t-\tau _{i}(t))K^{T}\quad e_{p}^{T}(t-\sigma _{i}(t))K^{T} \quad \int \limits _{t-\rho _{i}}^{t}e_{m}^{T}(s)\mathrm{d}s\\&\qquad \int \limits _{t-h_{i}}^{t}e_{p}^{T}(s)\mathrm{d}s \quad g^{T}(Ke_{p}(t-\sigma _{i}(t)))\quad g^{T}(Ke_{p}(t-\sigma _{i}))\quad \nu ^{T}_{1}(t)\quad \nu ^{T}_{2}(t)], \end{aligned}$$
$$\begin{aligned}&\!\!\!\varOmega ^{i}=\nonumber \\&\left[ \begin{array}{llllllllllllllll} \varOmega _{11}^{i}&{}0&{}\Sigma _{13}^{i}&{}0&{}0&{}\Sigma _{16}^{i}&{}0&{}0&{}\Sigma _{19}^{i}&{}0&{}0&{}0&{}\Sigma _{1,13}^{i}&{}0&{}\varOmega _{1,15}^{i}&{}0\\ *&{}\varOmega _{22}^{i}&{}0&{}\Sigma _{24}^{i}&{}0&{}0&{}0&{}\Sigma _{28}^{i}&{}\Sigma _{29}^{i}&{}\Sigma _{2,10}^{i}&{}0&{}0&{}0&{}0&{}0&{}\varOmega _{2,16}^{i}\\ *&{}*&{}\Sigma _{33}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}\Sigma _{3,13}^{i}&{}0&{}\varOmega _{3,15}^{i}&{}0\\ *&{}*&{}*&{}\Sigma _{44}^{i}&{}0&{}0&{}0&{}0&{}\Sigma _{49}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}\varOmega _{4,16}^{i}\\ *&{}*&{}*&{}*&{}\Sigma _{55}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}\Sigma _{66}^{i}&{}0&{}0&{}\Sigma _{69}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{77}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{88}^{i}&{}0&{}\Sigma _{8,10}^{i}&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{99}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}\varOmega _{9,16}^{i}\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{10,10}^{i}&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{11,11}^{i}&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{12,12}^{i}&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{13,13}^{i}&{}0&{}\varOmega _{13,15}^{i}&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\Sigma _{14,14}^{i}&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\varOmega _{15,15}^{i}&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\varOmega _{16,16}^{i}\\ \end{array}\right] \!,\nonumber \\ \end{aligned}$$
(48)

with

$$\begin{aligned} \varOmega _{11}^{i}&= K^{T}\bar{E}_{i}^{T}P_{1i}\bar{E}_{i}K+\sum _{j=1}^{N}\pi _{ij}P_{1j}+(1+\bar{\pi }\rho )Q_{1} +(\rho _{i}+\bar{\pi }\frac{\rho ^{2}}{2})Q_{3}+K^{T}(R_{1}+R_{5})K \\&+ \, \bar{\pi }\tau K^{T}(\alpha R_{1}+R_{2}+R_{5})K-K^{T}V_{1}K+\bar{H}_{mi}^{T}\bar{H}_{mi},\, \varOmega _{1,15}^{i}=P_{1i}\bar{M}_{i}, \\ \varOmega _{22}^{i}&= K^{T}\bar{F}_{i}^{T}P_{2i}\bar{F}_{i}K+\sum _{j=1}^{N}\pi _{ij}P_{2j}+(1+\bar{\pi }h)Q_{2} +(h_{i}+\bar{\pi }\frac{h^{2}}{2})Q_{4}+K^{T}(R_{3}+R_{6})K \\&+ \, \bar{\pi }\sigma K^{T}(\beta R_{3}+R_{4}+R_{6})K-K^{T}V_{2}K+(1+\bar{\pi }\sigma )K^{T}L^{T}(T_{1}+T_{2})L K+\bar{H}_{pi}^{T}\bar{H}_{pi},\\ \varOmega _{2,16}^{i}&= P_{2i}\bar{N}_{i},\,\varOmega _{3,15}^{i}=-\tau ^{2}\bar{A}_{i}^{T}K^{T}S_{1}K\bar{M}_{i},\, \varOmega _{4,16}^{i}=-\sigma ^{2}\bar{C}_{i}^{T}K^{T}S_{2}K\bar{N}_{i},\\ \varOmega _{9,16}^{i}&= \sigma ^{2}\bar{D}_{i}^{T}K^{T}S_{2}K\bar{N}_{i},\, \varOmega _{13,15}^{i}=\tau ^{2}\bar{B}_{i}^{T}K^{T}S_{1}K\bar{M}_{i},\, \varOmega _{15,15}^{i}=\tau ^{2}\bar{M}_{i}^{T}K^{T}S_{1}K\bar{M}_{i}-\gamma _{1}^{2}I,\\ \varOmega _{16,16}^{i}&= \sigma ^{2}\bar{N}_{i}^{T}K^{T}S_{2}K\bar{N}_{i}-\gamma _{2}^{2}I, \end{aligned}$$

and the other parameters are defined as in Theorem 1.

It is obvious that if \(\varOmega ^{i}<0\), then one can conclude that \(J(t)<0\). Note that when disturbances are zero, that is \(\nu _{1}(t)=0\), and \(\nu _{2}(t)=0\), then it is easy to deduce from Theorem 1 that the filtering error system (10) is globally stochastically stable in the mean-square sense.

However, the inequality \(\varOmega ^{i}<0\) is not an LMI, and it is very difficult to get solutions. Hence we will find an equivalent LMI representation for \(\varOmega ^{i}<0\).

For each \(r_{t}=i\), \(i\in S\), define

$$\begin{aligned} P_{1i}&= \left[ \begin{array}{cc} X_{1i}&{} \quad Y_{1i}-X_{1i}\\ Y_{1i}-X_{1i}&{} \quad X_{1i}-Y_{1i} \end{array}\right] >0, \quad P_{2i}= \left[ \begin{array}{cc} X_{2i}&{} \quad Y_{2i}-X_{2i}\\ Y_{2i}-X_{2i}&{} \quad X_{2i}-Y_{2i} \end{array}\right] >0, \end{aligned}$$
$$\begin{aligned} Q_{1}&= \left[ \begin{array}{cc} Q_{11}^{1m}&{} \quad Q_{12}^{1m}\\ {Q_{12}^{1m}}^{T}&{} \quad Q_{22}^{1m} \end{array}\right] >0, \quad Q_{2}= \left[ \begin{array}{cc} Q_{11}^{2p}&{} \quad Q_{12}^{2p}\\ {Q_{12}^{2p}}^{T}&{} \quad Q_{22}^{2p} \end{array}\right] >0, \end{aligned}$$
$$\begin{aligned} Q_{3}&= \left[ \begin{array}{cc} Q_{11}^{3m}&{} \quad Q_{12}^{3m}\\ {Q_{12}^{3m}}^{T}&{} \quad Q_{22}^{3m} \end{array}\right] >0, \quad Q_{4}= \left[ \begin{array}{cc} Q_{11}^{4p}&{} \quad Q_{12}^{4p}\\ {Q_{12}^{4p}}^{T}&{} \quad Q_{22}^{4p} \end{array}\right] >0. \end{aligned}$$

Pre- and post-multiplying (48) by \(\{\Delta _{i}, \mathrm{{diag}}\{I\}_{14\times 14}\}\), where

$$\begin{aligned} \Delta _{i}=\left[ \begin{array}{cccccccc} Y_{1i}^{-1}&{}\quad Y_{1i}^{-1}&{}\quad 0&{}\quad 0&{}\quad Y_{1i}^{-1}&{}\quad Y_{1i}^{-1}&{}\quad 0&{}\quad 0\\ I&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I&{} \quad 0&{} \quad 0&{} \quad 0\\ 0&{} \quad 0&{} \quad Y_{2i}^{-1}&{} \quad Y_{2i}^{-1}&{} \quad 0&{} \quad 0&{} \quad Y_{2i}^{-1}&{} \quad Y_{2i}^{-1}\\ 0&{} \quad 0&{} \quad I&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I&{} \quad 0\\ 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I&{} \quad 0&{} \quad 0&{} \quad 0\\ 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I&{} \quad 0&{} \quad 0\\ 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I&{} \quad 0\\ 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad 0&{} \quad I\\ \end{array}\right] \end{aligned}$$

and its transpose, we can see that the following LMI holds

$$\begin{aligned} \tilde{\varPsi }^{i}&= \left[ \begin{array}{cc} \tilde{\varPsi }_{1}^{i}&{} \quad \tilde{\varPsi }_{2}^{i}\\ *&{} \quad \tilde{\varPsi }_{3}^{i} \end{array}\right] <0, \end{aligned}$$
(49)

where

$$\begin{aligned}&\!\!\!\tilde{\varPsi }_{1}^{i}=\nonumber \\&\left[ \begin{array}{ccccccccccc} \tilde{\varPsi }_{11}^{i}&{}\tilde{\varPsi }_{12}^{i}&{}0&{}0&{} \tilde{\varPsi }_{15}^{i} &{}\tilde{\varPsi }_{16}^{i} &{}0&{}0&{}0&{}Y_{1i}^{-1}W_{1}^{T}&{}0\\ *&{}\tilde{\varPsi }_{22}^{i}&{}0&{}0&{}\tilde{\varPsi }_{25}^{i}&{} \tilde{\varPsi }_{26}^{i} &{}0&{}0&{}0&{}W_{1}^{T}&{}0\\ *&{}*&{}\tilde{\varPsi }_{33}^{i}&{}\tilde{\varPsi }_{34}^{i}&{}0&{}0&{}\tilde{\varPsi }_{37}^{i} &{} \tilde{\varPsi }_{38}^{i} &{}0&{}0&{}0\\ *&{}*&{}*&{}\tilde{\varPsi }_{44}^{i}&{}0&{}0&{}\tilde{\varPsi }_{47}^{i} &{}\tilde{\varPsi }_{48}^{i} &{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}\tilde{\varPsi }_{55}^{i}&{}-Q_{12}^{1m}&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}-Q_{22}^{1m}&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}\tilde{\varPsi }_{77}^{i}&{}-Q_{12}^{2p}&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}-Q_{22}^{2p}&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}-R_{1}+R_{2}&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}-R_{2}-V_{1}&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}-R_{3}+R_{4}\\ \end{array}\right] \!, \end{aligned}$$
$$\begin{aligned} \tilde{\varPsi }_{2}^{i}=\left[ \begin{array}{ccccccccccc} 0&{} \tilde{\varPsi }_{1,13}^{i} &{}0&{}0&{}0&{}0&{}0&{}\tilde{\varPsi }_{1,19}^{i}&{}0&{}\tilde{\varPsi }_{1,21}^{i}&{}0\\ 0&{}-W_{1}^{T}+V_{1}&{}0&{}0&{}0&{}0&{}0&{}\tilde{\varPsi }_{2,19}^{i}&{}0&{}\tilde{\varPsi }_{2,21}^{i}&{}0\\ Y_{2i}^{-1}W_{2}^{T}&{}\tilde{\varPsi }_{3,13}^{i}&{} \tilde{\varPsi }_{3,14}^{i} &{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}\tilde{\varPsi }_{3,22}^{i}\\ W_{2}^{T}&{}\tilde{\varPsi }_{4,13}^{i}&{}-W_{2}^{T}+V_{2}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}\tilde{\varPsi }_{4,22}^{i}\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}\tilde{\varPsi }_{5,19}^{i} &{}0&{}\tilde{\varPsi }_{5,21}^{i} &{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}-\sigma ^{2}C_{i}^{T}S_{2}D_{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}-\sigma ^{2}C_{i}^{T}S_{2}N_{i}\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}V_{1}-W_{1}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ \end{array}\right] , \end{aligned}$$
$$\begin{aligned}&\!\!\!\tilde{\varPsi }_{3}^{i}=\nonumber \\&\left[ \begin{array}{lllllllllll} -R_{4}-V_{2}&{}0&{}-W_{2}+V_{2}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}\tilde{\varPsi }_{13,13}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0 &{}\tilde{\varPsi }_{13,22}^{i}\\ *&{}*&{}\tilde{\varPsi }_{14,14}^{i}&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}-\frac{1}{\rho _{i}}Q_{11}^{3m}&{}-\frac{1}{\rho _{i}}Q_{12}^{3m}&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}-\frac{1}{\rho _{i}}Q_{22}^{3m}&{}0&{}0&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}-\frac{1}{h_{i}}Q_{11}^{4p}&{}-\frac{1}{h_{i}}Q_{12}^{4p}&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}-\frac{1}{h_{i}}Q_{22}^{4p}&{}0&{}0&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}\tilde{\varPsi }_{19,19}^{i}&{}0&{} \tilde{\varPsi }_{19,21}^{i} &{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}-T_{2}&{}0&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\tilde{\varPsi }_{21,21}^{i}&{}0\\ *&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}*&{}\tilde{\varPsi }_{22,22}^{i}\\ \end{array}\right] \!, \end{aligned}$$

with

$$\begin{aligned} \tilde{\varPsi }_{11}^{i}&= -A_{i}Y_{1i}^{-1}-Y_{1i}^{-1}A_{i}^{T}+Y_{1i}^{-1}E_{i}^{T}Y_{1i}E_{i}Y_{1i}^{-1} +\bar{\pi }\rho Y_{1i}^{-1}(Q_{11}^{1m}+Q_{12}^{1m}+{Q_{12}^{1m}}^{T}+Q_{22}^{1m})Y_{1i}^{-1}\\&+ \, (\rho _{i}+\bar{\pi }\frac{\rho ^{2}}{2})Y_{1i}^{-1}(Q_{11}^{3m} +Q_{12}^{3m}+{Q_{12}^{3m}}^{T}+Q_{22}^{3m})Y_{1i}^{-1}+Y_{1i}^{-1}(R_{1}+R_{5})Y_{1i}^{-1}\\&+ \, \bar{\pi }\tau Y_{1i}^{-1}(\alpha R_{1}+R_{2}+R_{5})Y_{1i}^{-1}-Y_{1i}^{-1}V_{1}Y_{1i}^{-1} +Y_{1i}^{-1}\sum _{j=1}^{N}\pi _{ij}Y_{1j}Y_{1i}^{-1} +Y_{1i}^{-1}H_{mi}^{T}H_{mi}Y_{1i}^{-1}\\&+ \, \tau ^{2}Y_{1i}^{-1}A_{i}^{T}S_{1}A_{i}Y_{1i}^{-1}, \\ \tilde{\varPsi }_{12}^{i}&= -A_{i}-Y_{1i}^{-1}A_{i}^{T}Y_{1i}+Y_{1i}^{-1}E_{i}^{T}Y_{1i}E_{i}+\bar{\pi }\rho Y_{1i}^{-1}(Q_{11}^{1m}+{Q_{12}^{1m}}^{T}) +(\rho _{i}+\bar{\pi }\frac{\rho ^{2}}{2})Y_{1i}^{-1}(Q_{11}^{3m}\\&+ \, {Q_{12}^{3m}}^{T}) +Y_{1i}^{-1}(R_{1}+R_{5})+\bar{\pi }\tau Y_{1i}^{-1}(\alpha R_{1}+R_{2}+R_{5})-Y_{1i}^{-1}V_{1}+Y_{1i}^{-1}\sum _{j=1}^{N}\pi _{ij}Y_{1j} \\&-\, Y_{1i}^{-1}C_{mi}^{T}B_{fi}^{T}(Y_{1i}-X_{1i})+\tau ^{2}Y_{1i}^{-1}A_{i}^{T}S_{1}A_{i},\\ \tilde{\varPsi }_{15}^{i}&= -A_{i}-Y_{1i}^{-1}Q_{11}^{1m}+\tau ^{2}Y_{1i}^{-1}A_{i}^{T}S_{1}A_{i}-Y_{1i}^{-1}{Q_{12}^{1m}}^{T},\tilde{\varPsi }_{16}^{i} = -Y_{1i}^{-1}Q_{12}^{1m} -Y_{1i}^{-1}Q_{22}^{1m} ,\\ \tilde{\varPsi }_{22}^{i}&= -Y_{1i}A_{i}-A_{i}^{T}Y_{1i}+E_{i}^{T}Y_{1i}E_{i}+\bar{\pi }\rho Q_{11}^{1m} +(\rho _{i}+\bar{\pi }\frac{\rho ^{2}}{2})Q_{11}^{3m}+R_{1}+R_{5}+\bar{\pi }\tau (\alpha R_{1}\\&+ \, R_{2}+R_{5}) -V_{1}+\sum _{j=1}^{N}\pi _{ij}X_{1j}+A_{fi}^{T}(Y_{1i}-X_{1i})-C_{mi}^{T}B_{fi}^{T}(Y_{1i}-X_{1i})+(Y_{1i}-X_{1i})A_{fi}\\&- \, (Y_{1i}-X_{1i})B_{fi}C_{mi}+\tau ^{2}A_{i}^{T}S_{1}A_{i}, \\ \tilde{\varPsi }_{25}^{i}&= -Y_{1i}A_{i}+(Y_{1i}-X_{1i})A_{fi}-(Y_{1i}-X_{1i})B_{fi}C_{mi}-Q_{11}^{1m}+\tau ^{2}A_{i}^{T}S_{1}A_{i},\tilde{\varPsi }_{26}^{i}= -(Y_{1i}-X_{1i})A_{fi} -Q_{12}^{1m} , \\ \tilde{\varPsi }_{33}^{i}&= -C_{i}Y_{2i}^{-1}-Y_{2i}^{-1}C_{i}^{T}+Y_{2i}^{-1}F_{i}^{T}Y_{2i}F_{i}Y_{2i}^{-1} +\bar{\pi }hY_{2i}^{-1}(Q_{11}^{2p}+Q_{12}^{2p}+{Q_{12}^{2p}}^{T}+Q_{22}^{2p})Y_{2i}^{-1}\\&+ \, (h_{i}+\bar{\pi }\frac{h^{2}}{2})Y_{2i}^{-1}(Q_{11}^{4p} +Q_{12}^{4p}+{Q_{12}^{4p}}^{T}+Q_{22}^{4p})Y_{2i}^{-1}+Y_{2i}^{-1}(R_{3}+R_{6})Y_{2i}^{-1}\\&+ \, \bar{\pi }\sigma Y_{2i}^{-1}(\beta R_{3}+R_{4}+R_{6})Y_{2i}^{-1}-Y_{2i}^{-1}V_{2}Y_{2i}^{-1} +(1+\bar{\pi }\sigma )Y_{2i}^{-1}L^{T}(T_{1}+T_{2})LY_{2i}^{-1}\\&+ \, Y_{2i}^{-1}\sum _{j=1}^{N}\pi _{ij}Y_{2j}Y_{2i}^{-1}+Y_{2i}^{-1}H_{pi}^{T}H_{pi}Y_{2i}^{-1} +\sigma ^{2}Y_{2i}^{-1}C_{i}^{T}S_{2}C_{i}Y_{2i}^{-1}, \end{aligned}$$
$$\begin{aligned} \tilde{\varPsi }_{34}^{i}&= -C_{i}-Y_{2i}^{-1}C_{i}^{T}Y_{2i}+Y_{2i}^{-1}F_{i}^{T}Y_{2i}F_{i}+\bar{\pi }hY_{2i}^{-1}(Q_{11}^{2p} +{Q_{12}^{2p}}^{T})+(h_{i}+\bar{\pi }\frac{h^{2}}{2})Y_{2i}^{-1}\\&\times (Q_{11}^{4p}+{Q_{12}^{4p}}^{T})+Y_{2i}^{-1}(R_{3}+R_{6}) +\bar{\pi }\sigma Y_{2i}^{-1}(\beta R_{3}+R_{4}+R_{6})-Y_{2i}^{-1}V_{2}\\&+ \, (1+\bar{\pi }\sigma )Y_{2i}^{-1}L^{T}(T_{1}+T_{2})L+Y_{2i}^{-1}\sum _{j=1}^{N}\pi _{ij}Y_{2j} -Y_{2i}^{-1}C_{pi}^{T}D_{fi}^{T}(Y_{2i}-X_{2i})\\&+ \, \sigma ^{2}Y_{2i}^{-1}C_{i}^{T}S_{2}C_{i},\\ \tilde{\varPsi }_{37}^{i}&= -C_{i}-Y_{2i}^{-1}Q_{11}^{2p}+\sigma ^{2}Y_{2i}^{-1}C_{i}^{T}S_{2}C_{i} -Y_{2i}^{-1}{Q_{12}^{2p}}^{T},\tilde{\varPsi }_{38}^{i} = -Y_{2i}^{-1}Q_{12}^{2p} -Y_{2i}^{-1}Q_{22}^{2p},\\ \tilde{\varPsi }_{44}^{i}&= -Y_{2i}C_{i}-C_{i}^{T}Y_{2i}+F_{i}^{T}Y_{2i}F_{i}+\bar{\pi }hQ_{11}^{2p} +(h_{i}+\bar{\pi }\frac{h^{2}}{2})Q_{11}^{4p}+R_{3}+R_{6}+\bar{\pi }\sigma (\beta R_{3}\\&+ \, R_{4}+R_{6})-V_{2} +(1+\bar{\pi }\sigma )L^{T}(T_{1}+T_{2})L+\sum _{j=1}^{N}\pi _{ij}X_{2j}+C_{fi}^{T}(Y_{2i}-X_{2i})\\&+ \, (Y_{2i}-X_{2i})C_{fi}-(Y_{2i}-X_{2i})D_{fi}C_{pi}-C_{pi}^{T}D_{fi}^{T}(Y_{2i}-X_{2i})+\sigma ^{2}C_{i}^{T}S_{2}C_{i},\\ \tilde{\varPsi }_{47}^{i}&\!=\! \!-\!Y_{2i}C_{i}\!-\!Q_{11}^{2p}\!+\!\sigma ^{2}C_{i}^{T}S_{2}C_{i}+(Y_{2i}-X_{2i})C_{fi} -(Y_{2i}-X_{2i})D_{fi}C_{pi},\tilde{\varPsi }_{48}^{i} = -(Y_{2i}-X_{2i})C_{fi} -Q_{12}^{2p},\\ \tilde{\varPsi }_{55}^{i}&\!\!= \!\!\! -\!Q_{11}^{1m}\!\!+\!\!\tau ^{2}A_{i}^{T}S_{1}A_{i},\, \tilde{\varPsi }_{77}^{i}\!=\!\!-Q_{11}^{2p}\!+\!\!\sigma ^{2}C_{i}^{T}S_{2}C_{i},\, \tilde{\varPsi }_{1,13}^{i}\!\!=\!\! -Y_{1i}^{-1}W_{1}^{T}\! +\! Y_{1i}^{-1}V_{1},\, \tilde{\varPsi }_{1,19}^{i}\!=\!B_{i}\!\!-\!\!\tau ^{2}Y_{1i}^{-1}A_{i}^{T}S_{1}B_{i},\\ \tilde{\varPsi }_{1,21}^{i}&= M_{i}-\tau ^{2}Y_{1i}^{-1}A_{i}^{T}S_{1}M_{i},\, \tilde{\varPsi }_{2,19}^{i}=Y_{1i}B_{i}-\tau ^{2}A_{i}^{T}S_{1}B_{i},\\ \tilde{\varPsi }_{2,21}^{i}&\!=\!Y_{1i}M_{i}\!-\!(Y_{1i}\!-\!X_{1i})B_{fi}G_{mi}\!-\!\tau ^{2}A_{i}^{T}S_{1}M_{i},\, \tilde{\varPsi }_{3,13}^{i}\!=\!\!D_{i}\!-\!\sigma ^{2}Y_{2i}^{-1}C_{i}^{T}S_{2}D_{i}, \tilde{\varPsi }_{3,14}^{i}= -Y_{2i}^{-1}W_{2}^{T} + Y_{2i}^{-1}V_{2},\\ \tilde{\varPsi }_{3,22}^{i}&= N_{i}-\sigma ^{2}Y_{2i}^{-1}C_{i}^{T}S_{2}N_{i},\, \tilde{\varPsi }_{4,13}^{i}=Y_{2i}D_{i}-\sigma ^{2}C_{i}^{T}S_{2}D_{i},\\ \tilde{\varPsi }_{4,22}^{i}&= Y_{2i}N_{i}-\sigma ^{2}C_{i}^{T}S_{2}N_{i}-(Y_{2i}-X_{2i})D_{fi}G_{pi},\tilde{\varPsi }_{5,19}^{i} = -\tau ^{2}A_{i}^{T}S_{1}B_{i}, \tilde{\varPsi }_{5,21}^{i} = -\tau ^{2}A_{i}^{T}S_{1}M_{i},\\ \tilde{\varPsi }_{13,13}^{i}&= -(1-\mu _{1i})R_{5}-2V_{1}+\sigma ^{2}D_{i}^{T}S_{2}D_{i}+W_{1}+W_{1}^{T},\tilde{\varPsi }_{13,22}^{i} =\sigma ^{2}D_{i}^{T}S_{2}N_{i},\\ \tilde{\varPsi }_{14,14}^{i}&= -(1-\mu _{2i})R_{6}-2V_{2}+W_{2}+W_{2}^{T},\, \tilde{\varPsi }_{19,19}^{i}=-(1-\mu _{1i})T_{1}+\tau ^{2}B_{i}^{T}S_{1}B_{i},\tilde{\varPsi }_{19,21}^{i} =\tau ^{2}B_{i}^{T}S_{1}M_{i},\\ \tilde{\varPsi }_{21,21}^{i}&= \tau ^{2}M_{i}^{T}S_{1}M_{i}-\gamma _{1}^{2}I,\, \tilde{\varPsi }_{22,22}^{i}=\sigma ^{2}N_{i}^{T}S_{2}N_{i}-\gamma _{2}^{2}I. \end{aligned}$$

Define \(\bar{A}_{fi}\,=\,(Y_{1i}-X_{1i})A_{fi},\,\bar{B}_{fi}\,=\,(Y_{1i}-X_{1i})B_{fi},\, \bar{C}_{fi}\,=\,(Y_{2i}-X_{2i})C_{fi},\,\bar{D}_{fi}\,=\,(Y_{2i}-X_{2i})D_{fi}\). Then, pre- and post-multiplying (49) by diag\(\{Y_{1i},I,Y_{2i},\underbrace{I,\cdot \cdot \cdot \cdot ,I}_{19\,terms}\}\), one can obtain the LMI (17) in Theorem 2. Hence, for \(T>0\), \(J(T)<0\). That is,

$$\begin{aligned} {\parallel z_{m}(t)-z_{mf}(t)\parallel }\le \gamma _{1}{\parallel \nu _{1}(t)\parallel },\quad {\parallel z_{p}(t)-z_{pf}(t)\parallel }\le \gamma _{2}{\parallel \nu _{2}(t)\parallel }, \end{aligned}$$

for all nonzero \(\nu _{1}(t)\) and \(\nu _{2}(t)\). Thus, the filtering error system (10) is globally stochastically stable in the mean-square sense with \(H_{\infty }\) performances \(\gamma _{1}\) and \(\gamma _{2}\) by Definition 2. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi , V.M., Balasubramaniam, P. & Ratnavelu, K. Mode-Dependent \(H_{\infty }\) Filtering for Stochastic Markovian Switching Genetic Regulatory Networks with Leakage and Time-Varying Delays. Circuits Syst Signal Process 33, 3349–3388 (2014). https://doi.org/10.1007/s00034-014-9805-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9805-6

Keywords

Navigation