Skip to main content
Log in

Maximum Likelihood Recursive Least Squares Estimation for Multivariable Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses parameter estimation problems of the multivariable systems described by input–output difference equations. We decompose a multivariable system to several subsystems according to the number of the outputs. Based on the maximum likelihood principle, a maximum likelihood-based recursive least squares algorithm is derived to estimate the parameters of each subsystem. Finally, two numerical examples are provided to verify the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Ding, K.P. Deng, X.M. Liu, Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst. Signal Process. 33(x) (2014). doi:10.1007/s00034-014-9772-y

  2. F. Ding, Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  3. F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  4. F. Ding, Hierarchical parameter estimation algorithms for multivariable systems using measurement. Info. Sci. (2014). http://dx.doi.org/10.1016/j.ins.2014.02.103

  5. F. Ding, State filtering and parameter identification for state space systems with scarce measurements. Signal Process. (2014). doi:10.1016/j.sigpro.2014.03.031

  6. F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  7. R. Diversi, R. Guidorzi, U. Soverini, Maximum likelihood identification of noisy input–output models. Automatica 43(3), 464–472 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Favoreel, B.D. Moor, P.V. Overschee, Subspace state space system identification for industrial processes. J. Process Control 10(20–3), 149–155 (2000)

    Article  Google Scholar 

  9. S. Gibson, B. Ninness, Robust maximum-likelihood estimation of multivariable dynamic systems. Automatica 41(10), 1667–1682 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Guidorzi, Canonical structures in the identification of multivariable systems. Automatica 11, 261–374 (1975)

    Article  Google Scholar 

  11. R. Guidorzi, R. Diversi, Minimal representations of MIMO time-varying systems and realization of cyclostationary models. Automatica 39(11), 1903–1914 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.H. Li, Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. J.H. Li, F. Ding, Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput. Math. Appl. 62(11), 4170–4177 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Lin, Y. Shi, R. Burton, Modeling and robust discrete-time sliding mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans. Mechatron. 18(1), 1–10 (2013)

    Article  Google Scholar 

  15. Y.J. Liu, F. Ding, Convergence properties of the least squares estimation algorithm for multivariable systems. Appl. Math. Model. 37(1–2), 476–483 (2013)

    Article  MathSciNet  Google Scholar 

  16. Y.J. Liu, F. Ding, Y. Shi, An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–973 (2014)

    Article  MathSciNet  Google Scholar 

  17. Y.J. Liu, F. Ding, Y. Shi, Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle. Circuits Syst. Signal Process. 31(6), 1985–2000 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Y.J. Liu, Y.S. Xiao, X.L. Zhao, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Computat. 215(4), 1477–1483 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1999)

    Google Scholar 

  20. M. Lovera, T. Gustafsson, M. Verhaegen, Recursive subspace identification of linear and non-linear Wiener state–space models. Automatica 36(11), 1639–1650 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.X. Ma, F. Ding, Recursive relations of the cost functions for the least squares algorithms for multivariable systems. Circuits Syst. Signal Process. 32(1), 83–101 (2013)

    Article  MathSciNet  Google Scholar 

  22. G. Mercère, L. Bako, Parameterization and identification of multivariable state-space systems: a canonical approach. Automatica 47(8), 1547–1555 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Shi, H.Z. Fang, Kalman filter-based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Sun, D.Q. Zhu, S.X. Yang, A bio-inspired filtered backstepping cascaded tracking control of 7000 m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682–3692 (2014)

    Article  Google Scholar 

  25. D.N. Vizireanu, A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems. Measurement 45(5), 1331–1333 (2012)

    Article  Google Scholar 

  26. D.N. Vizireanu, S.V. Halunga, Single sine wave parameters estimation method based on four equally spaced samples. Int. J. Electron. 98(7), 941–948 (2011)

    Article  Google Scholar 

  27. J. Vörös, Modeling and identification of systems with backlash. Automatica 46(2), 369–374 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. D.Q. Wang, F. Ding, Y.Y. Chu, Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222, 203–212 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. D.Q. Wang, R. Ding, X.Z. Dong, Iterative parameter estimation for a class of multivariable systems based on the hierarchical identification principle and the gradient search. Circuits Syst. Signal Process. 31(6), 2167–2177 (2012)

    Article  MathSciNet  Google Scholar 

  30. D.Q. Wang, F. Ding, X.M. Liu, Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75(1–2), 49–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Wigren, Recursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterization. Automatica 42(1), 159–168 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Wills, B. Ninness, On gradient-based search for multivariable system estimates. IEEE Trans. Automat. Control 53(1), 298–306 (2008)

    Article  MathSciNet  Google Scholar 

  33. A. Wills, B. Ninness, S. Gibson, Maximum likelihood estimation of state space models from frequency domain data. IEEE Trans. Automat. Control 54(1), 19–33 (2009)

    Article  MathSciNet  Google Scholar 

  34. A. Wills, T.B. Schä, L. Ljung, B. Ninness, Identification of Hammerstein-Wiener models. Automatica 45(1), 70–81 (2013)

    Article  Google Scholar 

  35. W.X. Zheng, Least-squares identification of a class of multivariable systems with correlated disturbances. J. Frankl. Inst. 336(8), 1309–1324 (1999)

    Article  MATH  Google Scholar 

  36. J. Zheng, K.W.K. Lui, W.-K. Ma, H.C. So, Two simplified recursive Gauss-Newton algorithms for direct amplitude and phase tracking of a real sinusoid. IEEE Signal Proc. Let. 14(12), 984–987 (2007)

    Google Scholar 

  37. D.Q. Zhu, H. Huang, S.X. Yang, Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in 3D underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  38. A. Žilinskas, J. Žilinskas, A global optimization method based on the reduced simplicial statistical model. Math. Model. Anal. 16(3), 451–460 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61273024, 61305031, 51307089), the Nantong Science and Technology Project (BK2012060), the Industrialization Project for Colleges and Universities of Jiangsu Province (JHB2012-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ding, F., Jiang, P. et al. Maximum Likelihood Recursive Least Squares Estimation for Multivariable Systems. Circuits Syst Signal Process 33, 2971–2986 (2014). https://doi.org/10.1007/s00034-014-9783-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9783-8

Keywords

Navigation