Skip to main content
Log in

Collaborative Spectrum Sensing of Cognitive Radio Networks with Simple and Effective Fusion Scheme

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) provides a mechanism for effective spectrum usage. Spectrum sensing is an essential component of CR which comprises intelligent signal processing algorithms to identify the spectrum holes. In this paper, we propose a novel soft combining scheme, called mean cumulative sum (MCS), at the cognitive base station or Fusion center (FC), and we have investigated our proposed method through closed form expressions of probability of detection and probability of false alarm, respectively. We have also provided a method of obtaining an optimum threshold to minimize the sensing error which occurs in FC. Our simulation results show that proposed MCS combining scheme outperforms single user spectrum sensing and performs equally well as that of equal gain soft combining scheme. In addition, our results show that sensing error is reduced when optimum threshold is chosen at the FC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.C. Christopher, V.K. Kishore, A. Bagubali, Cognitive radio: spectrum sensing problems in signal processing. Int. J. Comput. Appl. 40(16), 09758887 (2012)

    Google Scholar 

  2. F. Digham, M.S. Alouini, M.K. Simon, On the energy detection of unknown signals over fading channels. IEEE Trans. Commun. 55(1), 21–24 (2007)

    Article  Google Scholar 

  3. S. Enserink, D. Cochran, in 28th Asilomar Conference on Signals, Systems, and Computers. A cyclostationary feature detector (1994), pp. 806–810

  4. G. Ganesan, Y. Li, in 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005). Cooperative spectrum sensing in cognitive radio networks (2005), pp. 137–143

  5. A. Ghasemi, E. Sousa, in 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005). Collaborative spectrum sensing for opportunistic access in fading environments (2005), pp. 131–136

  6. S. Haykin, Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  7. S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice-Hall, Englewood Cliffs, 1998)

    Google Scholar 

  8. J. Ma, Y. Li, in Global Telecommunications Conference, 2007 (GLOBECOM ’07). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks (IEEE, 2007), pp. 3139–3143

  9. J. Ma, G. Zhao, Y. Li, Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 7(11), 4502–4507 (2008)

    Article  Google Scholar 

  10. J. Mitola, J. Maguire G.Q., Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

  11. A. Papoulis, P. Unnikrishna, Probability, Random Variables, and Stochastic Processes, 4th edn. (TATA McGraw-Hill, New York, 2006)

  12. Spectrum policy task force, Report of the spectrum efficiency working group. Tech. rep., Federal Communications Commission (2002)

  13. E. Visotsky, S. Kuffner, R. Peterson, in 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005). On collaborative detection of tv transmissions in support of dynamic spectrum sharing (2005), pp. 338–345

  14. H. Zhang, Y. Shi, M. Liu, H1; step tracking control for networked discrete-time nonlinear systems with integral and predictive actions. IEEE Trans. Ind. Inform. 9(1), 337–345 (2013)

    Article  Google Scholar 

  15. H. Zhang, Y. Shi, A. Mehr, Robust static output feedback control and remote pid design for networked motor systems. IEEE Trans. Ind. Electron. 58(12), 5396–5405 (2011)

    Article  Google Scholar 

  16. H. Zhang, Y. Shi, A. Saadat, Robust H1 PID control for multivariable networked control systems with disturbance/noise attenuation. Int. J. Robust Nonlinear Control 22(2), 183–204 (2012)

    Article  MATH  Google Scholar 

  17. H. Zhang, Y. Shi, A. Saadat Mehr, Robust energy-to-peak filtering for networked systems with time-varying delays and randomly missing data. IET Control Theory Appl. 4(12), 2921–2936 (2010)

    Article  MathSciNet  Google Scholar 

  18. H. Zhang, Y. Shi, A. Saadat Mehr, H. Huang, Robust FIR equalization for time- varying communication channels with intermittent observations via an LMI approach. Signal Process. 91(7), 1651–1658 (2011)

    Article  MATH  Google Scholar 

  19. H. Zhang, Y. Shi, A.A. Saadat Mehr, Robust weighted H1 filtering for networked systems with intermittent measurements of multiple sensors. Int. J. Adapt. Control Signal Process. 25(4), 313–330 (2011)

    MATH  Google Scholar 

  20. W. Zhang, R. Mallik, K. Letaief, Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(12), 5761–5766 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Sriharipriya.

Appendices

Appendix 1

Proof for optimum threshold

$$\begin{aligned} \begin{array}{rcll} \dfrac{\mathrm{d}}{\mathrm{d}\Lambda }\left\{ P_e \right\} &{}=&{} 0\\ \dfrac{\mathrm{d}}{\mathrm{d}\Lambda }\left\{ 1+\mathbf {Q}\left( \dfrac{ \Lambda - \mu _{H_0}}{\sqrt{\Sigma _{H_0}}}\right) - \mathbf {Q}\left( \dfrac{ \Lambda - \mu _{H_1}}{\sqrt{\Sigma _{H_1}}}\right) \right\} &{}=&{}0\\ \dfrac{\mathrm{d}}{\mathrm{d}\Lambda }\left\{ 1+\frac{1}{2} - \frac{1}{2}erf\left( \dfrac{ \Lambda - \mu _{H_0}}{\sqrt{2\Sigma _{H_0}}}\right) - \frac{1}{2}+\frac{1}{2}erf\left( \dfrac{ \Lambda - \mu _{H_1}}{\sqrt{2\Sigma _{H_1}}}\right) \right\} &{}=&{}0\\ \end{array} \end{aligned}$$

where \(erf(\cdot )\) is an error function. Using the relation \(\frac{d}{\mathrm{d}x}erf(x) = \frac{2}{\sqrt{\pi }}\exp ^{-x^2}\), and after substituting from (8), (9), (10) and (11), the above equation becomes

$$\begin{aligned} \begin{array}{rcll} \left( \sqrt{1+2\gamma }\right) \exp {^{\dfrac{{-\left( \Lambda - \dfrac{M(N+1)}{2}\right) ^2}}{\dfrac{2M\left( 2N^2+3N+1\right) }{6N}}}} &{}=&{} \exp ^{\dfrac{{-\left( \Lambda - \dfrac{M(N+1)(1+\gamma )}{2}\right) ^2}}{\dfrac{2M\left( 1+2\gamma \right) \left( 2N^2+3N+1\right) }{6N}}} \\ \\ \end{array} \end{aligned}$$

taking natural logarithm on both sides, and solving the quadratic equation for \(\Lambda \), we get optimum threshold as,

$$\begin{aligned} \begin{array}{lcll} \Lambda&= \dfrac{-M\left( N+1\right) \gamma \pm \sqrt{M^2\left( N+1\right) ^2\gamma ^2 + 8\gamma X}}{-4\gamma } \end{array} \end{aligned}$$

where we let \(X \!=\! 2M\left( 1\!+\!2\gamma \right) \left( \dfrac{2N^2\!+\!3N\!+\!1}{6N}\right) \ln \left( \sqrt{1\!+\!2\gamma }\right) \!+\! \left( \dfrac{M\left( 1\!+\!N\right) \gamma }{2}\right) ^2\)

Appendix 2

Proof for convexity of \(P_e\)

We continue from our previous derivation to find \(\dfrac{\mathrm{d}^2P_e}{\mathrm{d}\Lambda ^2}\) as,

$$\begin{aligned} \begin{array}{rcll} \dfrac{\mathrm{d}^2P_e}{\mathrm{d}\Lambda ^2}&{}=&{}\dfrac{\left( \Lambda - \mu _{H_{0}}\right) }{\Sigma _{H_0}\sqrt{2 \pi \Sigma _{H_0}}}\exp ^{\dfrac{-\left( \Lambda -\mu _{H_0}\right) ^2}{2\Sigma _{H_0}}} - \dfrac{\left( \Lambda - \mu _{H_{1}}\right) }{\Sigma _{H_1}\sqrt{2 \pi \Sigma _{H_1}}}\exp ^{\dfrac{-\left( \Lambda -\mu _{H_1}\right) ^2}{2\Sigma _{H_1}}} \\ \end{array} \end{aligned}$$

From (8), (9), (10) and (11), we know that \(\mu _{H_1}>\mu _{H_0}, \Sigma _{H_1}>\Sigma _{H_0}\), and in addition \(\Sigma _{H_1}>\mu _{H_1}\). Therefore, the second derivative is \(\dfrac{\mathrm{d}_e}{\mathrm{d}\Lambda ^2} \ge 0\). Hence, the function \(P_e\) is convex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriharipriya, K.C., Baskaran, K. Collaborative Spectrum Sensing of Cognitive Radio Networks with Simple and Effective Fusion Scheme. Circuits Syst Signal Process 33, 2851–2865 (2014). https://doi.org/10.1007/s00034-014-9768-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9768-7

Keywords

Navigation