Skip to main content
Log in

Kinematics of shock waves in a radiating ideal gas containing dust particles

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Shock waves propagating through an ideal radiating gas containing solid dust particles of arbitrary strength are studied in this work. To analyze shock front kinematics, an infinite set of transport equations determining shock strength and induced discontinuities is obtained. A truncation approach of the infinite system of transport equations yields an efficient shock propagation system of finite ordinary differential equations. The analysis appropriately reflects the nonlinear steepening effects of the flow behind shock fronts due to the dynamic interaction between shock fronts and the flow behind them. The effects due to dust parameters and radiation on shock propagation are discussed with the help of a graphical representation. The decay laws for weak shocks in a non-radiating gas are precisely recovered by the second-order truncation approximation. The characteristic rule and the first- and second-order approximations are compared for shock waves of arbitrary strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available within the article.

References

  1. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10(4), 537–566 (1957)

    MathSciNet  Google Scholar 

  2. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, vol. 21. Springer, New York (1999)

    Google Scholar 

  3. Sharma, V.D., Shyam, R.: Growth and decay of weak discontinuities in radiative gasdynamics. Acta Astronaut. 8(1), 31–45 (1981)

    Google Scholar 

  4. Lax, P.D.: The formation and decay of shock waves. Am. Math. Mon. 79(3), 227–241 (1972)

    MathSciNet  Google Scholar 

  5. Whitham, G.B.: On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4(4), 337–360 (1958)

    MathSciNet  Google Scholar 

  6. Whitham, G.B.: On the propagation of weak shock waves. J. Fluid Mech. 1(3), 290–318 (1956)

    MathSciNet  Google Scholar 

  7. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer Berlin Heidelberg, New York (1999)

    Google Scholar 

  8. Sari, R., Bode, N., Yalinewich, A., MacFadyen, A.: Slightly two-or three-dimensional self-similar solutions. Phys. Fluids 24(8), 087102 (2012)

    Google Scholar 

  9. Mishkin, E.A., Fujimoto, Y.: Analysis of a cylindrical imploding shock wave. J. Fluid Mech. 89(1), 61–78 (1978)

    MathSciNet  Google Scholar 

  10. Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116(1), 014501 (2016)

    Google Scholar 

  11. Boyd, Z.M., Ramsey, S.D., Baty, R.S.: On the existence of self-similar converging shocks for arbitrary equation of state. arXiv preprint arXiv:1707.03792 (2017)

  12. Pai, S.I., Menon, S., Fan, Z.Q.: Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles. Int. J. Eng. Sci. 18(12), 1365–1373 (1980)

    Google Scholar 

  13. Miura, H., Glass, I.I.: On the passage of a shock wave through a dusty-gas layer. Proc. R. Soc. Lond. A Math. Phys. Sci. 385(1788), 85–105 (1983)

    Google Scholar 

  14. Gretler, W., Regenfelder, R.: Strong shock waves generated by a piston moving in a dust-laden gas under isothermal condition. Eur. J. Mech. B/Fluids 24(2), 205–218 (2005)

    Google Scholar 

  15. Higashino, F., Suzuki, T.: The effect of particles on blast waves in a dusty gas. Z. Naturforschung A 35(12), 1330–1336 (1980)

    Google Scholar 

  16. Popel, S.I., Gisko, A.A.: Charged dust and shock phenomena in the solar system. Nonlinear Process. Geophys. 13(2), 223–229 (2006)

    Google Scholar 

  17. Miura, H., Glass, I.I.: Development of the flow induced by a piston moving impulsively in a dusty gas. Proc. R. Soc. Lond. A Math. Phys. Sci. 397(1813), 295–309 (1985)

    Google Scholar 

  18. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, London (1959)

    Google Scholar 

  19. Korobeĭnikov, V.P.: Problems in the Theory of Point Explosion in Gases, vol. 119. American Mathematical Society, Providence, RI (1976)

    Google Scholar 

  20. Steiner, H., Hirschler, T.: A self-similar solution of a shock propagation in a dusty gas. Eur. J. Mech. B/Fluids 21(3), 371–380 (2002)

    MathSciNet  Google Scholar 

  21. Vishwakarma, J.P., Pandey, S.N.: Propagation of strong spherical shock waves in a dusty gas. Phys. Scr. 68(4), 259 (2003)

    Google Scholar 

  22. Gupta, N., Sharma, K., Arora, R.: Similarity solutions for cylindrical shock wave in self-gravitating non-ideal gas with axial magnetic field: Isothermal flow. Math. Methods Appl. Sci. 45(3), 1259–1275 (2022)

    MathSciNet  Google Scholar 

  23. Vishwakarma, J.P., Nath, G.: Similarity solutions for unsteady flow behind an exponential shock in a dusty gas. Phys. Scr. 74(4), 493 (2006)

    MathSciNet  Google Scholar 

  24. Jena, J., Sharma, V.D.: Self-similar shocks in a dusty gas. Int. J. Nonlinear Mech. 34(2), 313–327 (1999)

    MathSciNet  Google Scholar 

  25. Vishwakarma, J.P.: Propagation of shock waves in a dusty gas with exponentially varying density. Eur. Phys. J. B-Condens. Matter Complex Syst. 16, 369–372 (2000)

    Google Scholar 

  26. Shyam, R., Sharma, V.D., Menon, V.V.: Evolution of discontinuity at a disturbance wave head in a radiating gas. AIAA J. 19(3), 410–412 (1981)

    Google Scholar 

  27. Marshak, R.E.: Effect of radiation on shock wave behavior. Phys. Fluids 1(1), 24–29 (1958)

    MathSciNet  Google Scholar 

  28. Helliwell, J.B.: Differential approximation for the flux of thermal radiation. Phys. Fluids 9(9), 1869–1871 (1966)

    Google Scholar 

  29. Helliwell, J.B.: Self-similar piston problems with radiative heat transfer. J. Fluid Mech. 37(3), 497–512 (1969)

    Google Scholar 

  30. Wang, K.C.: The ‘piston problem’ with thermal radiation. J. Fluid Mech. 20(3), 447–455 (1964)

    MathSciNet  Google Scholar 

  31. Pai, S.I.: Radiation Gas Dynamics. Springer, Berlin (1966)

    Google Scholar 

  32. Pai, S.I., Hsieh, T.: A perturbation theory of anisentropic flow with radiative heat transfer. Z. Flugwiss. 18(2–3), 44 (1970)

    Google Scholar 

  33. Sharma, V.D., Radha, Ch.: Strong converging shock waves in a radiating gas. Z. Angew. Math. Mech. 75(12), 847–859 (1995)

    MathSciNet  Google Scholar 

  34. Sharma, K., Arora, R.: Similarity solutions for strong shock waves in non-ideal magnetogasdynamics under the effect of monochromatic radiation. Phys. Fluids 33(7), 077109 (2021)

    Google Scholar 

  35. Radha, Ch., Sharma, V.D., Jeffrey, A.: An approximate analytical method for describing the kinematics of a bore over a sloping beach. Appl. Anal. 81(4), 867–892 (2002)

    MathSciNet  Google Scholar 

  36. Maslov, V.P.: Propagation of shock waves in an isentropic, nonviscous gas. J. Sov. Math. 13(1), 119–163 (1980)

    Google Scholar 

  37. Gupta, B., Jena, J.: Kinematics of spherical waves in interstellar gas clouds. Int. J. Nonlinear Mech. 99, 51–58 (2018)

    Google Scholar 

  38. Sharma, V.D., Radha, Ch.: On one-dimensional planar and nonplanar shock waves in a relaxing gas. Phys. Fluids 6(6), 2177–2190 (1994)

    MathSciNet  Google Scholar 

  39. Singh, M., Chauhan, A., Sharma, K., Arora, R.: Kinematics of one-dimensional spherical shock waves in interstellar van der Waals gas clouds. Phys. Fluids 32(10), 107109 (2020)

    Google Scholar 

  40. Singh, M., Arora, R.: Propagation of one-dimensional planar and nonplanar shock waves in nonideal radiating gas. Phys. Fluids 33(4), 046106 (2021)

    Google Scholar 

  41. Anile, A.M., Russo, G.: Generalized wavefront expansion II: The propagation of step shocks. Wave Motion 10(1), 3–18 (1988)

    MathSciNet  Google Scholar 

  42. Gupta, P., Chaturvedi, R.K., Singh, L.P.: The propagation of weak shock waves in non-ideal gas flow with radiation. Eur. Phys. J. Plus 135(1), 17 (2020)

    Google Scholar 

  43. Gangopadhyay, M.: Nonlinear wave propagation through a radiating van der Waals fluid with variable density. Applied Mathematics and Scientific Computing, pp. 347–355. Springer (2019)

  44. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

  45. Truesdell, C., Toupin, R.: The Classical Field Theories. Springer, Berlin (1960)

    Google Scholar 

Download references

Acknowledgements

The author, Nandita Gupta, is grateful for the financial support provided by the “Ministry of Education, New Delhi, India”, under the scheme of Senior Research Fellowship. Mayank Singh thanks the hospitality of Mahatma Gandhi Central Library, Indian Institute of Technology Roorkee, India, where partial work of this research was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Coefficients present in Eq. (3.13) are as follows:

$$\begin{aligned} {h_{11}}= & {} \frac{{\Gamma {p_1}\chi }}{{\left( {1 - \theta {\rho _1}} \right) }} - \mu ,\quad {h_{12}} = \frac{{\frac{{\Gamma {p_1}}}{{{\rho _1}\left( {1 - \theta {\rho _1}} \right) }} - {\mu ^2}}}{{{h_{11}}}},\quad {h_{13}} = \frac{{\frac{{\Gamma {p_1}}}{{\left( {1 - \theta {\rho _1}} \right) }}\left( {{\chi ^2} - \frac{{{\hat{\chi }} }}{{\rho _1^2}}} \right) + {\omega _{11}}}}{{{h_{11}}}},\\ {\omega _{11}}= & {} - \frac{{\Gamma \mu \chi }}{{{{\left( {1 - \theta {\rho _1}} \right) }^2}}}\left\{ {{p_1}\theta {\hat{\chi }} + \left( {1 - \theta {\rho _1}} \right) + \frac{{{{\left( {1 - \theta {\rho _1}} \right) }^2}}}{\Gamma }} \right\} ,\\ {h_{14}}= & {} \frac{{\frac{{\Gamma {p_1}}}{{\left( {1 - \theta {\rho _1}} \right) }}\left( {\frac{{d\chi }}{{dt}} + 2\chi \phi - \frac{{{\hat{\phi }} }}{{\rho _1^2}} - \mu w\phi } \right) + {\omega _{12}}}}{{{h_{11}}}},\\ {\omega _{12}}= & {} - \mu \phi - \frac{{\Gamma \mu \phi }}{{\left( {1 - \theta {\rho _1}} \right) }} - \frac{{\Gamma \mu w{u_1}}}{{\left( {1 - \theta {\rho _1}} \right) }} + {\omega _{13}},\\ {\omega _{13}}= & {} - \frac{{\Gamma {p_1}\mu \theta }}{{{{\left( {1 - \theta {\rho _1}} \right) }^2}}}\left( {{\hat{\chi }} \phi + {\hat{\chi }} w{u_1} + \chi {\hat{\phi }} } \right) + {\omega _{14}},\\ {\omega _{14}}= & {} - \frac{{\left( {\Gamma - 1} \right) \mu {\hat{\chi }} }}{{\left( {1 - \theta {\rho _1}} \right) }}\left\{ {\frac{{\theta {Q_1}}}{{\left( {1 - \theta {\rho _1}} \right) }} + {{\left( {{Q_\rho }} \right) }_1}} \right\} ,\\ {h_{15}}= & {} \frac{{\frac{{\Gamma {p_1}}}{{\left( {1 - \theta {\rho _1}} \right) }}\left\{ {\frac{{d\phi }}{{dt}} + {\phi ^2} - \mu w\phi - \mu {u_1}w' - \frac{{\theta \mu }}{{\left( {1 - \theta {\rho _1}} \right) }}{\hat{\phi }} \left( {\phi + w{u_1}} \right) } \right\} + {\omega _{15}}}}{{{h_{11}}}},\\ {\omega _{15}}= & {} - \frac{{\left( {\Gamma - 1} \right) \mu {\hat{\phi }} }}{{\left( {1 - \theta {\rho _1}} \right) }}\left\{ {\frac{{\theta {Q_1}}}{{\left( {1 - \theta {\rho _1}} \right) }} + {{\left( {{Q_\rho }} \right) }_1}} \right\} . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Singh, M. & Arora, R. Kinematics of shock waves in a radiating ideal gas containing dust particles. Z. Angew. Math. Phys. 74, 243 (2023). https://doi.org/10.1007/s00033-023-02135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02135-1

Keywords

Mathematics Subject Classification

Navigation