Skip to main content
Log in

Well-posedness of strong solutions for the Vlasov equation coupled to non-Newtonian fluids in dimension three

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for coupled system of Vlasov and non-Newtonian fluid equations. We establish local well-posedness of the strong solutions, provided that the initial data are regular enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: An approximation lemma for \(W^{1,p}\) functions. In: Material Instabilities in Continuum Mechanics, Oxford Sci. Publ., pages 1.5. Oxford Univ. Press, New York (1988)

  2. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures. Lectures in Mathematics. ETH Zurich, Birkhauser (2005)

    Google Scholar 

  3. Bae, H.-O., Wolf, J.: Existence of strong solutions to the equations of unsteady motion of shear thickening incompressible fluids. Nonlinear Anal. Real World Appl. 23, 160–182 (2015)

    Article  MathSciNet  Google Scholar 

  4. Baranger, C., Desvillettes, L.: Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Equ. 3, 1–26 (2006)

    Article  MathSciNet  Google Scholar 

  5. Berselli, L.C., Diening, L., Růžìčka, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12, 101–132 (2010)

    Article  MathSciNet  Google Scholar 

  6. Boudin, L., Desvillettes, L., Grandmont, C.E., Moussa, A.: Global existence of solution for the coupled Vlasov and Navier-Stokes equations. Differ. Integral Equ. 22, 1247–1271 (2009)

    MathSciNet  Google Scholar 

  7. Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov-Navier-Stokes equations I. Light particles regime. Indiana Univ. Math. J. 53, 1495–1515 (2004)

    Article  MathSciNet  Google Scholar 

  8. Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov-Navier-Stokes equations II. Fine particles regime. Indiana Univ. Math. J. 53, 1517–1536 (2004)

    Article  MathSciNet  Google Scholar 

  9. Ha, S.-Y., Kim, H.K., Kim, J.-M., Park, J.: On the global existence of weak solutions for the Cucker–Smale–Navier–Stokes system with shear thickening. Sci. China Math. 61, 2033–2052 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hamdache, K.: Global existence and large time behavior of solutions for the Vlasov-Stokes equations. Jpn. J. Indust. Appl. Math. 15, 51–74 (1998)

    Article  Google Scholar 

  11. Han-Kwan, D., Miot, E., Moussa, A., Moyano, I.: Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system. Rev. Mat. Iberoam. 36, 37–60 (2020)

    Article  MathSciNet  Google Scholar 

  12. Kang, K., Kim, H.K., Kim, J.-M.: Existence of regular solutions for a certain type of Non-Newtonian Navier–Stokes equations. Z. Angew. Math. Phys. 70 (2019)

  13. Kang, K., Kim, H.K., Kim, J.-M.: Existence and temporal decay of regular solutions to non-Newtonian fluids coupled with Maxwell equations. Nonlinear Anal. 180, 284–307 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kim, H.K.: Hamiltonian systmes and the calculus of differential forms on the Wasserstein space. Thesis (Ph.D.)- Georgia Institute of Technology (2009)

  15. Málek, J., Nečas, M., Rokyta, M., Růžička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs. Chapman & Hall (1996)

  16. Mucha, P.B., Peszek, J., Pokorný, M.: Flocking particles in a non-Newtonian shear thickening fluid. Nonlinearity 31, 2703–2725 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math. 41, 169–201 (1996)

    Article  MathSciNet  Google Scholar 

  18. Temam, R.: Navier-Stokes Equations. Theory and numerical analysis. Stud. Math. Appl., 2. North-Holland Publishing Co., Amsterdam (1984)

Download references

Acknowledgements

We would like to thank the anonymous referee for valuable comments that improved the quality of this paper.

Funding

Kyungkeun Kang’s work is supported by NRF-2019R1A2C1084685. Hwa Kil Kim’s work is supported by NRF-2021R1F1A1048231. Jae-Myoung Kim was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2020R1C1C1A01006521).

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally.

Corresponding author

Correspondence to Hwa Kil Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, as mentioned, we give a proof of Lemma 4.1.

Proof of Lemma 4.1

We suppose that u is regular. We then compute certain a priori estimates. First of all, we note that by the \(L^2\)-energy estimate with (1.3),

$$\begin{aligned} \frac{d}{\text {d}t}\Vert u\Vert ^2_{L^2({\mathbb {R}}^3)}+m_0\Vert Du\Vert ^2_{L^2({\mathbb {R}}^3)}\le C\Vert u\Vert ^2_{L^2({\mathbb {R}}^3)}+C\Vert F\Vert ^2_{L^2({\mathbb {R}}^3)}. \end{aligned}$$
(A.71)

\(\bullet \) (\(\Vert \nabla u \Vert _{L^2}\)-estimate)  Taking derivative \(\partial _{x_i}\) to (4.56) and multiplying \(\partial _{x_i}u\),

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_i}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_i} (G\left[ |Du|^2 \right] Du): \partial _{x_i} Du\,\text {d}x \\{} & {} \quad =- \mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_i} \big ((U\cdot \nabla ) u \big )\cdot \partial _{x_i} u\,\text {d}x-\mathop {\int }\limits _{{\mathbb {R}}^3} F \cdot \partial _{x_i}\partial _{x_i} u\,\text {d}x. \end{aligned}$$

Noting that

$$\begin{aligned} \begin{aligned} \partial _{x_i}(G\left[ |Du|^2 \right] Du): \partial _{x_i} Du&=\big [ \partial _{x_i}G\left[ |Du|^2 \right] Du + G\left[ |Du|^2 \right] \partial _{x_i} Du \big ]: \partial _{x_i} Du\\&= 2 G^{'}[|Du|^2](D u: \partial _{x_i}Du)( Du: \partial _{x_i} Du) + G\left[ |Du|^2 \right] |\partial _{x_i} Du|^2\\&= 2 G^{'}[|Du|^2]| Du: \partial _{x_i} Du|^2 + G\left[ |Du|^2 \right] |\partial _{x_i} Du|^2, \end{aligned} \end{aligned}$$

we have

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_i}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}G\left[ |Du|^2 \right] |\partial _{x_i} Du|^2\,\text {d}x + \mathop {\int }\limits _{{\mathbb {R}}^3}2G^{'}[|Du|^2]| Du: \partial _{x_i} Du|^2\,\text {d}x \nonumber \\{} & {} \quad = -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_i} \big ((U\cdot \nabla ) u \big )\cdot \partial _{x_i} u\,\text {d}x-\mathop {\int }\limits _{{\mathbb {R}}^3} F \cdot \partial _{x_i}\partial _{x_i} u\,\text {d}x. \end{aligned}$$
(A.72)

Taking \(A=Du\) and \(B=\partial _{x_i} D u\) in the last inequality, we use the following inequality:

$$\begin{aligned} G[|A|^2]|B|^2 + 2 G^{\prime }[|A|^2](A:B)^2 \ge m_0|B|^2. \end{aligned}$$
(A.73)

Indeed, if \(G^{\prime }[|A|^2] \ge 0\), then

$$\begin{aligned} G[|A|^2]|B|^2 + 2 G^{\prime }[|A|^2](A:B)^2 \ge G[|A|^2]|B|^2 \ge m_0|B|^2. \end{aligned}$$

In case that \(G^{\prime }[|A|^2] <0\), we note that

$$\begin{aligned} G[|A|^2]|B|^2 + 2 G^{\prime }[|A|^2](A:B)^2 \ge \big (G[|A|^2] + 2 G^{\prime }[|A|^2]|A|^2 \big )|B|^2\ge m_0 |B|^2. \end{aligned}$$

Applying inequality (A.73) to (A.72), we obtain

$$\begin{aligned} \begin{aligned}&\frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_i}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}m_0 |\partial _{x_i} Du|^2\,\text {d}x \\&\quad \le -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_i} \big ((U\cdot \nabla ) u \big )\cdot \partial _{x_i} u\,\text {d}x-\mathop {\int }\limits _{{\mathbb {R}}^3} F \cdot \partial _{x_i}\partial _{x_i} u\,\text {d}x. \end{aligned} \end{aligned}$$
(A.74)

We will treat the term in right-hand side caused by convection together later.

\(\bullet \) (\(\Vert \nabla ^2 u \Vert _{L^2}\)-estimate)  Taking the derivative \(\partial _{x_{j}}\partial _{x_{i}}\) on (4.56) and multiplying it by \(\partial _{x_{j}}\partial _{x_{i}}u \),

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_{j}}\partial _{x_{i}}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}\Big [G\left[ |Du|^2 \right] D u\Big ]: \partial _{x_{j}}\partial _{x_{i}}D u\,\text {d}x \nonumber \\{} & {} \quad = -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}\big ((U\cdot \nabla u) \big )\cdot \partial _{x_{j}}\partial _{x_{i}} u\,\text {d}x-\mathop {\int }\limits _{{\mathbb {R}}^3} \partial _{x_i}\partial _{x_i}F: \partial _{x_i}\partial _{x_i} u\,\text {d}x. \end{aligned}$$
(A.75)

We observe that

$$\begin{aligned} \begin{aligned}&\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}\Big [G\left[ |Du|^2 \right] D u\Big ]:\partial _{x_{j}}\partial _{x_{i}}D u\,\text {d}x\\&\quad =\mathop {\int }\limits _{{\mathbb {R}}^3}G\left[ |Du|^2 \right] |\partial _{x_{j}}\partial _{x_{i}}D u|^2\, +\sum _{\sigma }\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{\sigma (i)}}G\left[ |Du|^2 \right] (\partial _{x_{\sigma (j)}}D u: \partial _{x_{j}}\partial _{x_{i}}D u)\,\text {d}x\\&\qquad +\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}G\left[ |Du|^2 \right] (D u: \partial _{x_{j}}\partial _{x_{i}}D u)\,\text {d}x=:I_{21}+I_{22}+I_{23}, \end{aligned} \end{aligned}$$
(A.76)

where \(\sigma :\{ i,j\}\rightarrow \{i,j \}\) is a permutation of \(\{i,j \}\). We separately estimate terms \(I_{22}\) and \(I_{23}\) in (A.76). Using Hölder, Young’s and Gagliardo-Nirenberg inequalities, we have for \(I_{22}\)

$$\begin{aligned} |I_{22}|= & {} \left| \mathop {\int }\limits _{{\mathbb {R}}^3} 2G^{'}[|Du|^2](Du: \partial _{x_{\sigma (i)}}D u)(\partial _{x_{\sigma (j)}}D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,\text {d}x \right| \\\le & {} C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert \nabla Du\Vert ^2_{L^4}\Vert \nabla ^2 Du\Vert _{L^2} \\\le & {} C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert Du\Vert _{L^\infty }\Vert \nabla ^2 Du\Vert ^2_{L^2}, \end{aligned}$$

where we used condition (1.3).

For \(I_{23}\), using Lemma 2.3, we compute

$$\begin{aligned} \begin{aligned} I_{23}&= \mathop {\int }\limits _{{\mathbb {R}}^3}2\big ( G^{'}[|Du|^2](Du: \partial _{x_{j}}\partial _{x_{i}}Du) + E_2 \big ) (D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,\text {d}x\\&=\mathop {\int }\limits _{{\mathbb {R}}^3}E_2(D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,\text {d}x + 2\mathop {\int }\limits _{{\mathbb {R}}^3}G^{'}[|Du|^2] |Du: \partial _{x_{j}}\partial _{x_{i}}Du|^2\,\text {d}x\\&:=I_{231}+I_{232}. \end{aligned} \end{aligned}$$

The term \(I_{231}\) is estimated as

$$\begin{aligned} \begin{aligned} \left| I_{231} \right|&\le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty } \Vert Du\Vert _{L^\infty }\Vert \nabla Du\Vert ^2_{L^4}\Vert \nabla ^2 Du\Vert _{L^2}\\&\le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty } \Vert Du\Vert _{L^\infty }^2\Vert \nabla ^2 Du\Vert _{L^2}^2, \end{aligned} \end{aligned}$$
(A.77)

where we used the first inequality of (2.14). We combine estimates (A.75)–(A.77) to get

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_{j}}\partial _{x_{i}}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}G\left[ |Du|^2 \right] |\partial _{x_{j}}\partial _{x_{i}}D u|^2 + \mathop {\int }\limits _{{\mathbb {R}}^3}2G^{'}[|Du|^2]|Du: \partial _{x_{j}}\partial _{x_{i}}Du|^2 \\{} & {} \quad \le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }(\Vert Du\Vert _{L^\infty } + \Vert Du\Vert _{L^\infty }^2)\Vert \nabla ^2 Du\Vert ^2_{L^2} -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}\big ((u\cdot \nabla u) \big )\cdot \partial _{x_{j}}\partial _{x_{i}} u. \end{aligned}$$

Similarly as in (A.74), we have

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial _{x_{j}}\partial _{x_{i}}u||^2_{L^2({\mathbb {R}}^3)}+\mathop {\int }\limits _{{\mathbb {R}}^3}m_0|\partial _{x_{j}}\partial _{x_{i}}D u|^2 \nonumber \\{} & {} \quad \le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }(\Vert Du\Vert _{L^\infty } + \Vert Du\Vert _{L^\infty }^2)\Vert \nabla ^2 Du\Vert ^2_{L^2} \nonumber \\{} & {} \qquad -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{j}}\partial _{x_{i}}\big ((U\cdot \nabla u) \big )\cdot \partial _{x_{j}}\partial _{x_{i}} u-\mathop {\int }\limits _{{\mathbb {R}}^3} \partial _{x_i}F \cdot \partial _{x_j}\partial _{x_j}\partial _{x_i} u\,\text {d}x. \end{aligned}$$
(A.78)

\(\bullet \) (\(\Vert \nabla ^3 u \Vert _{L^2}\)-estimate) For convenience, we denote \(\partial ^3:=\partial _{x_{k}}\partial _{x_{j}}\partial _{x_{i}}\). Similarly as before, taking the derivative \(\partial ^3\) on (4.56) and multiplying it by \(\partial ^3 u\),

$$\begin{aligned}{} & {} \frac{1}{2}\frac{d}{\text {d}t}||\partial ^3u||^2_{L^2({\mathbb {R}}^3)} +\mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3\Big [G\left[ |Du|^2 \right] D u\Big ]: \partial ^3D u\,\text {d}x \nonumber \\{} & {} \quad -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3\big ((U\cdot \nabla u) \big )\cdot \partial ^3 u\,\text {d}x- \mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3F:\partial ^3 u\,\text {d}x. \end{aligned}$$
(A.79)

Direct computations show that

$$\begin{aligned}{} & {} \mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3\Big [G\left[ |Du|^2 \right] D u\Big ]: \partial ^3D u\,\text {d}x\\{} & {} \quad =\mathop {\int }\limits _{{\mathbb {R}}^3}G\left[ |Du|^2 \right] |\partial ^3D u|^2\,\text {d}x \\{} & {} \qquad +\sum _{\sigma _3}\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{\sigma _3(i)}}G\left[ |Du|^2 \right] (\partial _{x_{\sigma _3(k)}}\partial _{x_{\sigma _3(j)}}D u:\partial ^3D u)\,\text {d}x \\{} & {} \qquad +\sum _{\sigma _3}\mathop {\int }\limits _{{\mathbb {R}}^3}\partial _{x_{\sigma _3(j)}}\partial _{x_{\sigma _3(i)}}G\left[ |Du|^2 \right] (\partial _{x_{\sigma _3(k)}}D u: \partial ^3Du)\,\text {d}x \\{} & {} \qquad +\mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3G\left[ |Du|^2 \right] (D u:\partial ^3D u)\,\text {d}x=I_{31}+I_{32}+I_{33}+I_{34}, \end{aligned}$$

where \(\sigma _3=\pi _3\circ {\tilde{\sigma }}_3\) such that \({\tilde{\sigma }}_3:\{i,j,k\}\rightarrow \{i,j,k\}\) is a permutation of \(\{i,j,k \}\) and \(\pi _3\) is a mapping from \(\{i,j,k\}\) to \(\{1,2,3\}\).

We separately estimate terms \(I_{32}\), \(I_{33}\) and \(I_{34}\). We note first that

$$\begin{aligned} \begin{aligned} |I_{32}|&\le \mathop {\int }\limits _{{\mathbb {R}}^3}|2(G^{'}[|Du|^2]| |Du||\partial _{x_{\sigma _3(i)}}Du||\partial _{x_{\sigma _3(k)}}\partial _{x_{\sigma _3(j)}} D u| |\partial ^3 D u|\,\text {d}x\\&\le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert \nabla Du\Vert _{L^6}\Vert \nabla ^2 Du\Vert _{L^3}\Vert \nabla ^3 Du\Vert _{L^2}\\&\le C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert \nabla ^2 Du\Vert _{L^2} \Vert Du\Vert _{L^\infty }^{\frac{1}{3}} \Vert \nabla ^3 Du\Vert ^{\frac{2}{3}}_{L^2}\Vert \nabla ^3Du\Vert _{L^2}\\&\le C\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty }\Vert Du\Vert _{L^\infty }^2 \Vert \nabla ^2 Du\Vert ^{6}_{L^2}+\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2}. \end{aligned} \end{aligned}$$
(A.80)

For \(I_{33}\), we have

$$\begin{aligned} |I_{33}|= & {} \left| \mathop {\int }\limits _{{\mathbb {R}}^3}( 2G^{'}[|Du|^2]Du:\partial _{x_{\sigma _3(j)}} \partial _{x_{\sigma _3(i)}} D u + E_2 )(\partial _{x_{\sigma _3(k)}}D u: \partial ^3Du)\,\text {d}x \right| \nonumber \\\le & {} \mathop {\int }\limits _{{\mathbb {R}}^3}2(G^{'}[|Du|^2]|Du||\nabla ^2 D u| + G\left[ |Du|^2 \right] |\nabla D u|^2 )|\nabla D u| |\nabla ^3 Du|\,\text {d}x \nonumber \\\le & {} C \Vert G^{'}[|Du|^2]Du\Vert _{L^\infty } \Vert \nabla ^2 Du\Vert _{L^3}\Vert \nabla Du\Vert _{L^6}\Vert \nabla ^3 Du\Vert _{L^2} +\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert \nabla Du\Vert ^3_{L^6}\Vert \nabla ^3 Du\Vert _{L^2} \nonumber \\\le & {} C\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty }\Vert Du \Vert _{L^\infty }^2\Vert \nabla ^2 Du\Vert ^{6}_{L^2} +C\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }\Vert \nabla ^2Du\Vert ^6_{L^2}+2\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2} \nonumber \\\le & {} C(\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty }\Vert Du \Vert _{L^\infty }^2+\Vert G(|Du|)\Vert ^2_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}+2\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2}, \end{aligned}$$
(A.81)

where we use same argument as (A.80) in the fourth inequality. Finally, for \(I_{34}\), using Lemma 2.3, we note that

$$\begin{aligned} \begin{aligned} I_{34}=&\mathop {\int }\limits _{{\mathbb {R}}^3}\big ( 2G^{'}[|Du|^2]Du:\partial ^3 D u) + E_3\big )(D u:\partial ^3D u)\,\text {d}x\\ =&2\mathop {\int }\limits _{{\mathbb {R}}^3} G^{'}[|Du|^2]|Du:\partial ^3 D u|^2\,\text {d}x + \mathop {\int }\limits _{{\mathbb {R}}^3} E_3(D u:\partial ^3D u)\,\text {d}x. \end{aligned} \end{aligned}$$
(A.82)

The second term in (A.82) is estimated as follows:

$$\begin{aligned} \mathop {\int }\limits _{{\mathbb {R}}^3}E_3(D u:\partial ^3D u)\,\text {d}x\le & {} \mathop {\int }\limits _{{\mathbb {R}}^3}|E_3||D u||\nabla ^3 D u|\,\text {d}x \nonumber \\\le & {} C\mathop {\int }\limits _{{\mathbb {R}}^3} G\left[ |Du|^2 \right] \big (|\nabla Du|^3 +|\nabla ^2 Du||\nabla Du| \big )|D u||\nabla ^3 D u|\,\text {d}x \nonumber \\\le & {} C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }\Vert Du\Vert _{L^\infty } \big ( \Vert \nabla Du\Vert _{L^6}^3 + \Vert \nabla Du\Vert _{L^6}\Vert \nabla ^2 Du\Vert _{L^3} \big )\Vert \nabla ^3 D u\Vert _{L^2} \nonumber \\\le & {} C\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }\Vert Du\Vert ^2_{L^\infty }\Vert \nabla ^2 Du\Vert ^6_{L^2}\nonumber \\{} & {} +C\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty }\Vert Du\Vert ^4_{L^\infty }\Vert \nabla ^2 Du\Vert ^{6}_{L^2}+2\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2} \nonumber \\\le & {} C(\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }\Vert Du\Vert ^2_{L^\infty }\nonumber \\{} & {} +\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty }\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}+2\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2}, \end{aligned}$$
(A.83)

where we use same argument as (A.81) in the third inequality. Adding up estimates (A.79)–(A.83), we obtain

$$\begin{aligned}{} & {} \frac{d}{\text {d}t}||\partial ^3u||^2_{L^2({\mathbb {R}}^3)} +\mathop {\int }\limits _{{\mathbb {R}}^3}G\left[ |Du|^2 \right] |\partial ^3D u|^2\,\text {d}x +\mathop {\int }\limits _{{\mathbb {R}}^3}2G^{'}[|Du|^2]|Du: \partial ^3Du|^2\,\text {d}x \\{} & {} \quad \le C(\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }+ \Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty } )(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}+5\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2} \\{} & {} \qquad -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3\big ((U\cdot \nabla u) \big )\cdot \partial ^3u\,\text {d}x- \mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^2F:\partial ^4 u\,\text {d}x. \end{aligned}$$

Hence, we have

$$\begin{aligned}{} & {} \frac{d}{\text {d}t}||\partial ^3u||^2_{L^2({\mathbb {R}}^3)} +\mathop {\int }\limits _{{\mathbb {R}}^3}m_0|\partial ^3D u|^2\,\text {d}x \nonumber \\{} & {} \quad \le C(\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }+ \Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty } )(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}+5\epsilon \Vert \nabla ^3 Du\Vert ^{2}_{L^2} \nonumber \\{} & {} \qquad -\mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^3\big ((U\cdot \nabla u) \big )\cdot \partial ^3u\,\text {d}x- \mathop {\int }\limits _{{\mathbb {R}}^3}\partial ^2F:\partial ^4 u\,\text {d}x. \end{aligned}$$
(A.84)

Next, we estimate the terms caused by convection terms in (A.74), (A.78) and (A.84).

$$\begin{aligned} \begin{aligned} \sum _{1\le |\alpha |\le 3}\mathop {\int }\limits _{{\mathbb {R}}^3} \partial ^{\alpha }[(U\cdot \nabla )u]\cdot \partial ^{\alpha }u\,\text {d}x&=\sum _{1\le |\alpha |\le 3}\mathop {\int }\limits _{{\mathbb {R}}^3} [\partial ^{\alpha }((U\cdot \nabla )u)-U\cdot \nabla \partial ^{\alpha }u]\partial ^{\alpha }u\,\text {d}x\\&\le \sum _{1\le |\alpha |\le 3}\Vert \partial ^{\alpha }((U\cdot \nabla )u)-U\cdot \nabla \partial ^{\alpha }u\Vert _{L^2}\Vert \partial ^{\alpha } u\Vert _{L^{2}}\\&\le \sum _{1\le |\alpha |\le 3} \Vert \nabla U\Vert _{L^\infty } \Vert u\Vert _{H^{3}}\Vert \partial ^{\alpha } u\Vert _{L^{2}}\\&\le C\Vert \nabla U\Vert _{L^\infty }\Vert u\Vert ^2_{H^{3}}, \end{aligned} \end{aligned}$$
(A.85)

where we use the following inequality:

$$\begin{aligned} \sum _{|\alpha |\le m}\mathop {\int }\limits _{{\mathbb {R}}^3} \Vert \nabla ^{\alpha }( fg)-(\nabla ^{\alpha }f)g\Vert _{L^2}\le C(\Vert f\Vert _{H^{m-1}}\Vert \nabla +\Vert f\Vert _{L^{\infty }}\Vert g\Vert _{H^m}). \end{aligned}$$

For the external force F,

$$\begin{aligned} \begin{aligned} \sum _{0\le |\alpha |\le 2}\mathop {\int }\limits _{{\mathbb {R}}^3} \partial ^{\alpha }F \cdot \partial ^{\alpha }u\,\text {d}x= C\Vert F\Vert ^2_{H^2}+\frac{m_0}{64}\sum _{1\le |\beta |\le 2}\Vert \partial ^{\beta }u\Vert ^2_{L^{2}}. \end{aligned} \end{aligned}$$
(A.86)

We combine (A.71), (A.74), (A.78) and (A.84) with (A.85) and (A.86) to conclude

$$\begin{aligned} \begin{aligned}&\frac{d}{\text {d}t}||u||^2_{H^3({\mathbb {R}}^3)} +\frac{m_0}{2}\mathop {\int }\limits _{{\mathbb {R}}^3} (|\nabla ^3 Du|^2+|\nabla ^2 Du|^2 + |\nabla Du|^2 + | Du|^2)\,\text {d}x\\&\quad \le C\Vert \nabla U\Vert _{L^\infty }\Vert u\Vert ^2_{H^{3}} +C\Vert F\Vert ^2_{H^{2}} +C\Vert G\left[ |Du|^2 \right] \Vert _{L^\infty }(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert _{L^\infty })\Vert \nabla ^2 Du\Vert ^2_{L^2}\\&\qquad +C(\Vert G\left[ |Du|^2 \right] \Vert ^2_{L^\infty }+\Vert G\left[ |Du|^2 \right] \Vert ^6_{L^\infty })(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}. \end{aligned} \end{aligned}$$
(A.87)

Furthermore, we have

$$\begin{aligned} \Vert G\left[ |Du|^2 \right] \Vert _{L^\infty } \le \max _{0\le s\le \Vert Du\Vert _{L^\infty }}G[s] \le \max _{0\le s\le C\Vert u\Vert _{H^3}}G[s]:=g(\Vert u\Vert _{H^3}), \end{aligned}$$
(A.88)

where \(g:[0,\infty ) \mapsto [0,\infty )\) is a non-decreasing function. We set \(X(t):= \Vert u(t)\Vert _{H^3({\mathbb {R}}^3)}\) and it then follows from (A.87) and (A.88) that

$$\begin{aligned} \frac{d}{\text {d}t} X^2\le f_3(X)X^2+C\Vert F\Vert ^2_{H^{2}({\mathbb {R}}^3)} \end{aligned}$$

for some non-decreasing continuous function \(f_3\), which immediately implies that there exists \(T_3>0\) such that \( \sup _{0\le t\le T_3}X(t) < \infty \).

We note that \(\partial _t{u}\in L^2((0,T);L^2({\mathbb {R}}^3))\). Indeed, we introduce the antiderivative of G, denoted by \({\tilde{G}}\), i.e., \({\tilde{G}}[s]=\mathop {\int }\limits ^s_0 G[\tau ]d\tau \). Multiplying \(\partial _t u\) to (4.56), integrating it by parts and using Hölder and Young’s inequalities, we have

$$\begin{aligned} \frac{1}{2}\mathop {\int }\limits _{{\mathbb {R}}^3}|\partial _t{u}|^2\,\text {d}x +\frac{1}{2}\frac{d}{\text {d}t}\mathop {\int }\limits _{{\mathbb {R}}^3}{\tilde{G}}[|Du|^2]\,\text {d}x\le C\mathop {\int }\limits _{{\mathbb {R}}^3}|{\bar{u}}|^2|\nabla u|^2+C\mathop {\int }\limits _{{\mathbb {R}}^3}|F|^2\,\text {d}x. \end{aligned}$$
(A.89)

Again, integrating estimate (A.89) over the time interval [0, T], we obtain

$$\begin{aligned}{} & {} \mathop {\int }\limits _0^{T}\mathop {\int }\limits _{{\mathbb {R}}^3}|\partial _t u|^2\,\text {d}x\text {d}t+\mathop {\int }\limits _{{\mathbb {R}}^3}{\tilde{G}}[|Du(\cdot , T)|^2]\,\text {d}x \nonumber \\{} & {} \quad \le \mathop {\int }\limits _{{\mathbb {R}}^3}{\tilde{G}}[|Du_0|^2]\,\text {d}x+ C\mathop {\int }\limits _0^{T}\mathop {\int }\limits _{{\mathbb {R}}^3}|{\bar{u}}|^2|\nabla u|^2\,\text {d}x\text {d}t+C\mathop {\int }\limits _0^{T}\mathop {\int }\limits _{{\mathbb {R}}^3}|F|^2\,\text {d}x\text {d}t. \end{aligned}$$
(A.90)

Using Sobolev embedding, the second term in (A.90) is estimated as follows:

$$\begin{aligned} \mathop {\int }\limits _0^{T}\mathop {\int }\limits _{{\mathbb {R}}^3}|{\bar{u}}|^2|\nabla u|^2\,\text {d}x\text {d}t\le & {} \mathop {\int }\limits _0^{T} \Vert u\Vert ^2_{L^{\infty }}\Vert \nabla u\Vert ^2_{L^2}\text {d}t \nonumber \\\le & {} C\sup _{0<\tau \le T}\Vert u(\tau )\Vert ^2_{H^{2}}\mathop {\int }\limits _0^{T} \Vert \nabla u\Vert ^2_{L^{2}}\text {d}t<\infty , \end{aligned}$$
(A.91)

and due to the assumption for the external force F, we also get \( \mathop {\int }\limits _0^{T}\mathop {\int }\limits _{{\mathbb {R}}^3}|F|^2\,\text {d}x\text {d}t<\infty \). Therefore, we obtain \(\partial _t{u} \in L^{2}(0,T; L^2({\mathbb {R}}^3))\).

For the uniqueness of a solution, we let \(u_1\) and \(u_2\) be strong solutions for system (4.56). First of all, we rewrite the equation for \({\tilde{u}}:=u_1-u_2\) and \({\tilde{p}}:=p_1-p_2\).

$$\begin{aligned} {\tilde{u}}_t-\nabla \cdot (G(|Du_1|^{2})-G(|Du_2|^{2})) +(U\cdot \nabla ){\tilde{u}}+\nabla {\tilde{p}}=0, \end{aligned}$$

with \(\nabla \cdot {\tilde{u}}=0\) and \(\nabla \cdot U=0\). Multiplying \({\tilde{u}}\) on the both sides of the equation above and integrating on \({\mathbb {R}}^3\), we obtain

$$\begin{aligned} \begin{aligned}&\frac{d}{\text {d}t}\Vert {\tilde{u}}\Vert ^2_{L^2({\mathbb {R}}^3)}+m_0\Vert \nabla {\tilde{u}}\Vert ^2_{L^2({\mathbb {R}}^3)}\le 0, \end{aligned} \end{aligned}$$
(A.92)

where we use Lemma 2.4 and the divergence-free condition. Applying Gronwall’s inequality to estimate (A.92), we get \({\tilde{u}}(x,0)=0\) in \(L^\infty (0,T;L^2({\mathbb {R}}^3))\cap L^2(0,T;H^{1}({\mathbb {R}}^3))\). Hence this implies the uniqueness of a solution. Finally, we introduce Galerkin approximation procedure of equation (4.56)–(4.57) to make up construction of solution. We omit this part (see refer to [13, Proposition 3.1] for detailed proof). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Kim, H.K. & Kim, JM. Well-posedness of strong solutions for the Vlasov equation coupled to non-Newtonian fluids in dimension three. Z. Angew. Math. Phys. 74, 233 (2023). https://doi.org/10.1007/s00033-023-02130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02130-6

Keywords

Mathematics Subject Classification

Navigation