Skip to main content
Log in

A two-strain malaria transmission model with seasonality and incubation period

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Malaria is one of the most common mosquito-borne diseases in the world. To understand the joint effects of the vector-bias, seasonality, spatial heterogeneity multi-strain and the extrinsic incubation period of the parasite on the dynamics of malaria, we formulate a time-periodic two-strain malaria reaction–diffusion model with delay and nonlocal terms. We then consider threshold conditions that determine whether malaria will spread. More specifically, the basic reproduction number \(\mathcal {R}_{i}\) for single strain-i and invasion number \(\hat{\mathcal {R}}_{i}\) for each strain-\(i~(i=1,2)\) are derived. Our results imply that if \(\max \{\mathcal {R}_{1},\mathcal {R}_{2}\}<1\), then the disease-free periodic solution is globally attractive; if \(\mathcal {R}_{i}>1>\mathcal {R}_{j}~(i,j=1,2, i\ne j)\), then competitive exclusion, where the jth strain dies out and the ith strain persists; if \(\min \{\hat{\mathcal {R}}_{1},\hat{\mathcal {R}}_{2},\mathcal {R}_1,\mathcal {R}_2\}>1\), then the disease persists. Our numerical simulations show that spatially heterogeneous infection can increase the basic reproduction number and the omission of the vector-bias effect will underestimate the infection risk of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53(3), 421–436 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z., Peng, R., Zhao, X.-Q.: A reaction–diffusion malaria model with seasonality and incubation period. J. Math. Biol. 77(1), 201–228 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chamchod, F., Britton, N.F.: Analysis of a vector-bias model on malaria transmission. Bull. Math. Biol. 73(3), 639–657 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chiyaka, C., Garira, W., Dube, S.: Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic areas. Theor. Popul. Biol. 75(1), 14–29 (2009)

    Article  Google Scholar 

  5. Chu, H., Bai, Z.: A two-strain reaction–diffusion malaria model with seasonality and vector-bias. Z. Angew. Math. Phys. 74(1), 21 (2023)

    Article  MathSciNet  Google Scholar 

  6. Esteva, L., Gumel, A.B., De LeN, C.V.: Qualitative study of transmission dynamics of drug-resistant malaria. Math. Comput. Modell. 50(3–4), 611–630 (2009)

    Article  MathSciNet  Google Scholar 

  7. Feng, Z., Qiu, Z., Sang, Z., Lorenzo, C., Glasser, J.: Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math. Biosci. 245(2), 171–187 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hale, J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    Google Scholar 

  9. Hess, P.: Periodic–Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    Google Scholar 

  10. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure. SIAM J. Math. Anal. 40(6), 2496–2516 (2009)

    Article  MathSciNet  Google Scholar 

  11. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1976)

    Google Scholar 

  12. Kesavan, S.K., Reddy, N.P.: On the feeding strategy and the mechanics of blood sucking in insects. J. Theoret. Biol. 113(4), 781–783 (1985)

    Article  Google Scholar 

  13. Kingsolver, J.G.: Mosquito host choice and the epidemiology of malaria. Am. Nat. 130(6), 811–827 (1987)

    Article  Google Scholar 

  14. Lacroix, R., Mukabana, W.R., Gouagna, L.C., Koella, J.C.: Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biol. 3(9), e298 (2005)

    Article  Google Scholar 

  15. Liang, X., Zhang, L., Zhao, X.-Q.: Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease). J. Dyn. Differ. Equ. 31(3), 1247–1278 (2017)

    Article  MathSciNet  Google Scholar 

  16. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60(1), 1–40 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lou, Y., Zhao, X.-Q.: A climate-based malaria transmission model with structured vector population. SIAM J. Appl. Math. 70(6), 2023–2044 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62(4), 543–568 (2011)

    Article  MathSciNet  Google Scholar 

  19. Macdonald, G.: The Epidemiology and Control Of Malaria. Oxford University Press, London (1957)

    Google Scholar 

  20. Mallet, J.: The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation. Evol. Ecol. Res. 14, 627–665 (2012)

  21. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37(1), 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  22. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321(1), 1–44 (1990)

    MathSciNet  Google Scholar 

  23. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Springer, New York (1986)

    Book  Google Scholar 

  24. Mirski, T., Bartoszcze, M., Bielawska-Drozd, A.: Impact of climate change on infectious diseases. Pol. J. Environ. Stud. 21(3), 525–532 (2012)

    Google Scholar 

  25. Ross, R.: The Prevention of Malaria. John Murray, London (1911)

    Google Scholar 

  26. Ruan, S., Xiao, D., Beier, J.C.: On the delayed Ross–Macdonald model for malaria transmission. Bull. Math. Biol. 70(4), 1098–1114 (2008)

    Article  MathSciNet  Google Scholar 

  27. Shi, Y., Zhao, H.: Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J. Math. Biol. 82(4), 1–44 (2021)

    Article  MathSciNet  Google Scholar 

  28. Smith, H.L.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. In: Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence (1995)

  29. Thieme, H.R.: Convergence results and a Poincare–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30(7), 755–763 (1992)

    Article  MathSciNet  Google Scholar 

  30. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70(1), 188–211 (2009)

    Article  MathSciNet  Google Scholar 

  31. Watts, D., Burke, D., Harrison, B., Whitmire, R., Nisalak, A.: Effect of temperature on the vector effciency of Aedes aegypti for dengue 2 virus. Army Med. Res. Inst. Infect. Dis. 36, 143–152 (1987)

    Google Scholar 

  32. Wang, X., Zhao, X.-Q.: A periodic vector-bias malaria model with incubation period. SIAM J. Appl. Math. 77(1), 181–201 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Zhao, X.-Q.: A climate-based malaria model with the use of bed nets. J. Math. Biol. 77(1), 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  34. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  Google Scholar 

  35. Zhang, L., Wang, Z.C., Zhao, X.-Q.: Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period. J. Differ. Equ. 258(9), 3011–3036 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhao, L., Wang, Z.C., Ruan, S.: Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period. Nonlinear Anal. Real Word Appl. 51, 102966 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29(1), 67–82 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, London (2017)

    Book  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referee for his/her careful reading and helpful suggestions which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by the NSF of China (No. 12171381), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (No. 22JSY029) and the Fundamental Research Funds for the Central Universities (Nos. QTZX23034 and QTZX23004).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Wu, SL. A two-strain malaria transmission model with seasonality and incubation period. Z. Angew. Math. Phys. 74, 217 (2023). https://doi.org/10.1007/s00033-023-02112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02112-8

Keywords

Mathematics Subject Classification

Navigation