Skip to main content
Log in

Cut Singularity of Compressible Stokes Flow

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we study the cut singularity governed by a compressible Stokes system. The cut is a non-Lipshitz boundary. The divergence of the leading corner singularity vector, which has the singular exponent 1/2, has different trace values on either side of cut. In the consequence the pressure solution of the continuity equation must have a jump across the streamline emanating from the cut tip. We establish a piecewise regularity of the solution by the corner singularity and the contact singular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston, London (1985)

    MATH  Google Scholar 

  3. Han, J.H., Kweon, J.R., Park, M.: Interior discontinuity for a stationary compressible Stokes system with inflow datum. Comput. Math. Appl. 74, 2321–2329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Han, J.H., Kweon, J.R.: Interior jump and contact singularity for compressible flows with inflow jump datum. J. Diff. Equ. 283, 37–70 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kozlov, V.A., Ma\(\acute{z}\)ya, V.G., Rossmann, J,: Spectral Problems Associated Corner singularities of Solutions to Elliptic Equations. AMS, Washington (2001)

  6. Kweon, J.R., Kellogg, R.B.: Compressible stokes problem on nonconvex polygonal domains. J. Diff. Equ. 176, 290–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kweon, J.R., Kellogg, R.B.: Regularity of Solutions to the Navier-Stokes equations for compressible Barotropic flows on a Polygon. Arch. Rational Mech. Anal. 163, 35–64 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kweon, J.R., Kellogg, K.B.: Regularity of solutions to the Navier-stokes equations for compressible flows on a polygon. SIAM J. Math. Anal. 35, 1451–1485 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kweon, J.R., Kellogg, R.B.: The Pressure Singularity for Compressible Stokes Flows in a Concave Polygon. J. Math. Fluid Mech. 11, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kweon, J.R.: A jump discontinuity of compressible viscous flows grazing a non-convex corner. J. Math. Pures Appl. 100, 410–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kweon, J.R., Lee, T.Y.: Corner direction flows of a compressible Stokes system, submitted, (2022)

  12. Kwon, O.S., Kweon, J.R.: For the vorticity-veloticy-pressure form of the Navier-Stokes equations on a bounded plane domain with corners, nonlinear. Analysis 75, 2936–2956 (2012)

    MATH  Google Scholar 

  13. Kwon, O.S., Kweon, J.R.: Interior jump and regularity of compressible viscous Navier-stokes flows through a cut. SIAM J. Math. Anal. 49(3), 1982–2008 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Navier, C.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris. 6, 389–416 (1823)

    Google Scholar 

  15. Rowley, C.W., Colonius, T., Basu, A.J.: On self-sustained oscillations in two dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rowley, C.W., Williams, D.R.: Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weinbaum, S.: On the singular points in the laminar two-dimensional near wake flow field. J. Fluid Mech. 33, 38–63 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Ryong Kweon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B06050386).

Appendix

Appendix

Lemma 6.1

If \(\textbf{f}\in \textbf{H}^{-1}\) and \(g\in {\textrm{L}}^2\) then there are unique weak solutions \(\textbf{u}\in \textbf{H}^1_0\) and \(p\in {\textrm{L}}^2\) of (1.1), satisfying the inequality

$$\begin{aligned} \Vert \textbf{u}\Vert _1+\Vert p\Vert _0+\Vert p\Vert _{0,\Gamma _\textrm{out}}\le C(\Vert \textbf{f}\Vert _{-1}+\Vert g\Vert _0), \end{aligned}$$
(6.1)

where C is a generic constant depending on \(\Omega \).

Proof

The proof easily follows by a weak formulation on the pair space \(\textbf{H}^1_0\times {\textrm{L}}^2\). Letting \((,\,)\) denoting the \({\textrm{L}}^2\) inner product we consider the bilinear forms

$$\begin{aligned} \begin{aligned} a(\textbf{u},\textbf{v})&=\mu (\nabla \textbf{u},\nabla \textbf{v})+\nu (\text{ div }\,\textbf{u},\text{ div }\,\textbf{v}),\\ b(p,\textbf{v})&=-(p,\text{ div }\,\textbf{v}),\\ c(p,\eta )&=(\textbf{U}\cdot \nabla p,\eta ). \end{aligned} \end{aligned}$$
(6.2)

The weak form of problem (1.1) is to find the solutions \(\textbf{u}\in \textbf{H}^1_0\) and \(p\in {\textrm{L}}^2\) satisfying

$$\begin{aligned} \begin{aligned} a(\textbf{u},\textbf{v})+b(p,\textbf{v})&=(\textbf{f},\textbf{v}),\quad \forall \textbf{v}\in \textbf{H}^1_0,\\ c(p,\eta )-b(\eta ,\textbf{u})&=(g,\eta ),\quad \forall \eta \in {\textrm{L}}^2. \end{aligned} \end{aligned}$$
(6.3)

More detailed proof can be found in [9, Lemma 2.8]. \(\square \)

We next show Theorem 4.1 by constructing the dual functions used in the stress intensity coefficients.

Lemma 6.2

Let \(q'=q/(q-1)\) for \(q\ge 2\). For \(s>s_1\) there are nontrivial vector functions \(\textbf{v}_j\in \textbf{H}^{2-s,q'}\), \(j=1,2\), such that \(\textbf{v}_j\) satisfies the boundary value problem

$$\begin{aligned} \begin{aligned} {\mathbb {L}}\textbf{v}_j&=0{} & {} \text{ in } \Omega ,\\ \textbf{v}_j&=0{} & {} \text{ on } \Gamma , \end{aligned} \end{aligned}$$

and is orthogonal to the image of \(\textbf{H}^{s,q}\cap \textbf{H}^{1,q}_0\) by the Lamé operator \({\mathbb {L}}\) in the \({\textrm{L}}^2\) inner product.

Proof

We define the function \(\textbf{v}_j\), \(j=1,2\), by \(\textbf{v}_j={\mathbf \Phi }_j^*+\textbf{z}_j\), where \({\mathbf \Phi }_j^*=\chi r^{-1/2}\varvec{\Theta }_j^*(\theta )\) with

$$\begin{aligned} \begin{aligned} \varvec{\Theta }_1^*(\theta )&=\begin{pmatrix} \nu _1\sin {\theta /2}-\nu _1\sin {5\theta /2}\\ -(8+5\nu _1)\cos {\theta /2}+\nu _1\cos {5\theta /2} \end{pmatrix},\\ \varvec{\Theta }_2^*(\theta )&=\begin{pmatrix} -(8+3\nu _1)\cos {\theta /2}-\nu _1\cos {5\theta /2}\\ \nu _1\sin {\theta /2}-\nu _1\sin {5\theta /2} \end{pmatrix}, \end{aligned} \end{aligned}$$

and \(\textbf{z}_j\) is the solution of the problem

$$\begin{aligned} \begin{aligned} -{\mathbb {L}}\textbf{z}_j&={\mathbb {L}}{\mathbf \Phi }_j^*{} & {} \text{ in } \Omega ,\\ \textbf{z}_j&=0{} & {} \text{ on } \Gamma . \end{aligned} \end{aligned}$$
(6.4)

Since \({\mathbb {L}}(r^{-1/2}\varvec{\Theta }_j^*(\theta ))=0\), \({\mathbb {L}}{\mathbf \Phi }_j^*\in \textbf{L}^q\) and the solution \(\textbf{z}_j\) of (6.4) becomes \(\textbf{z}_j=\textbf{C}{\mathbf \Phi }+\textbf{z}_{j,R}\) where \(\textbf{C}\) is a constant vector and \(\textbf{z}_{j,R}\in \textbf{H}^{2,q}\). Since \({\mathbf \Phi }_j\in \textbf{H}^{t,q}\) for \(t<s_1\), \(\textbf{z}_j\in \textbf{H}^{t,q}\). Also, since \({\mathbf \Phi }_j^*\in \textbf{H}^{2-s,q'}\) we have \(\textbf{v}_j\in \textbf{H}^{2-s,q'}\). The vector function \(\textbf{v}_j\) satisfies \({\mathbb {L}}\textbf{v}_j=0\) in \(\Omega \) and \(\textbf{v}_j|_\Gamma =0\). Therefore, for any \(\textbf{w}\in \textbf{H}^{s,q}\cap \textbf{H}^{1,q}_0\) for \(s>s_1\),

$$\begin{aligned} \begin{aligned} \int \limits _\Omega {\mathbb {L}}\textbf{w}\cdot \textbf{v}_j{\textrm{d}}\textbf{x}&=\int \limits _\Omega \textbf{w}\cdot {\mathbb {L}}\textbf{v}_j{\textrm{d}}\textbf{x}+\int \limits _\Gamma \frac{\partial \textbf{w}}{\partial \textbf{n}}\cdot \textbf{v}_j-\textbf{w}\cdot \frac{\partial \textbf{v}_j}{\partial \textbf{n}} ds\\&\hspace{0.5cm}+\nu _1\int \limits _\Gamma (\text{ div }\,\textbf{w})\textbf{n}\cdot \textbf{v}_j-(\text{ div }\,\textbf{v}_j)\textbf{n}\cdot \textbf{w}ds\\&=0. \end{aligned} \end{aligned}$$

Hence the required result follows. \(\square \)

To show (4.5), if we write the solution \(\textbf{u}\) of (4.2) by \(\textbf{u}=\textbf{C}{\mathbf \Phi }+\textbf{u}_R\) where \(\textbf{C}=({{\mathcal {C}}}_1,{{\mathcal {C}}}_2)\in \mathbb {R}^2\) and \(\textbf{u}_R\in \textbf{H}^{s,q}\), then \(\textbf{u}_R=\textbf{g}\) on \(\Gamma \) and

$$\begin{aligned} \begin{aligned} \int \limits _\Omega {\mathbb {L}}\textbf{u}_R\cdot \textbf{v}_j{\textrm{d}}\textbf{x}&=-\int \limits _\Gamma \textbf{g}\cdot \Big (\frac{\partial \textbf{v}_j}{\partial \textbf{n}}+\nu _1(\text{ div }\,\textbf{v}_j)\textbf{n}\Big )ds, \end{aligned} \end{aligned}$$

so

$$\begin{aligned} \begin{aligned} \int \limits _\Omega {\mathbb {L}}(\textbf{C}{\mathbf \Phi })\cdot \textbf{v}_j{\textrm{d}}\textbf{x}&=-\int \limits _\Omega ({\textbf{h}}+{\mathbb {L}}\textbf{u}_R)\cdot \textbf{v}_j{\textrm{d}}\textbf{x}\\&=-\int \limits _\Omega {\textbf{h}}\cdot \textbf{v}_j{\textrm{d}}\textbf{x}+\int \limits _\Gamma \textbf{g}\cdot \Big (\frac{\partial \textbf{v}_j}{\partial \textbf{n}}+\nu _1(\text{ div }\,\textbf{v}_j)\textbf{n}\Big )ds. \end{aligned} \end{aligned}$$

Then we have a linear system for \({{\mathcal {C}}}_1\) and \({{\mathcal {C}}}_2\):

$$\begin{aligned} \begin{aligned} a_{11}{{\mathcal {C}}}_1+a_{12}{{\mathcal {C}}}_2&=-\int \limits _\Omega {\textbf{h}}\cdot \textbf{v}_1{\textrm{d}}\textbf{x}+\int \limits _\Gamma \textbf{g}\cdot \Big (\frac{\partial \textbf{v}_1}{\partial \textbf{n}}+\nu _1(\text{ div }\,\textbf{v}_1)\textbf{n}\Big )ds,\\ a_{21}{{\mathcal {C}}}_1+a_{22}{{\mathcal {C}}}_2&=-\int \limits _\Omega {\textbf{h}}\cdot \textbf{v}_2{\textrm{d}}\textbf{x}+\int \limits _\Gamma \textbf{g}\cdot \Big (\frac{\partial \textbf{v}_2}{\partial \textbf{n}}+\nu _1(\text{ div }\,\textbf{v}_2)\textbf{n}\Big )ds, \end{aligned} \end{aligned}$$
(6.5)

where \(a_{ij}=\int \limits _\Omega {\mathbb {L}}{\mathbf \Phi }_j\cdot \textbf{v}_i{\textrm{d}}\textbf{x}\). On the other hand, since \(\textbf{v}_i={\mathbf \Phi }_i^*+\textbf{z}_i\),

$$\begin{aligned} \begin{aligned} a_{ij}&=\int \limits _\Omega {\mathbb {L}}{\mathbf \Phi }_j\cdot {\mathbf \Phi }_i^*+{\mathbf \Phi }_j\cdot {\mathbb {L}}\textbf{z}_i{\textrm{d}}\textbf{x}\\&=\int \limits _\Omega {\mathbb {L}}{\mathbf \Phi }_j\cdot {\mathbf \Phi }_i^*-{\mathbf \Phi }_j\cdot {\mathbb {L}}{\mathbf \Phi }_i^*{\textrm{d}}\textbf{x}. \end{aligned} \end{aligned}$$

Set \(\Omega _\delta =\Omega \cap \{r>\delta \}\) for \(\delta <r_0\ll 1\). By integration by parts,

$$\begin{aligned} \int \limits _{\Omega _\delta }{\mathbb {L}}{\mathbf \Phi }_j\cdot {\mathbf \Phi }_i^*-{\mathbf \Phi }_j\cdot {\mathbb {L}}{\mathbf \Phi }_i^*{\textrm{d}}\textbf{x}=\int \limits _{\partial \Omega _\delta }E_1(r,\theta )\text{ d }s+\nu _1\int \limits _{\partial \Omega _\delta }E_2(r,\theta )\text{ d }s, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} E_1(r,\theta )&=\frac{\partial {\mathbf \Phi }_j}{\partial \textbf{n}}\cdot {\mathbf \Phi }_i^*-{\mathbf \Phi }_j\cdot \frac{\partial {\mathbf \Phi }_i^*}{\partial \textbf{n}},\\ E_2(r,\theta )&=(\text{ div }\,{\mathbf \Phi }_j)\textbf{n}\cdot {\mathbf \Phi }_i^*-(\text{ div }\,{\mathbf \Phi }_i^*)\textbf{n}\cdot {\mathbf \Phi }_j, \end{aligned} \end{aligned}$$

and \(\textbf{n}\) is the outward normal unit vector to the boundary \(\partial \Omega _\delta \). Since \(\chi =0\) for \(r>2r_0\), we have

$$\begin{aligned} \begin{aligned} \int \limits _{\partial \Omega _\delta }E_1(r,\theta )\text{ d }s&=\int \limits _{2r_0}^\delta E_1(r,-\pi )dr+\int \limits _{-\pi }^\pi E_1(\delta ,\theta )\delta d\theta +\int \limits _\delta ^{2r_0} E_1(r,\pi )dr\\&=-\int \limits _{-\pi }^\pi \varvec{\Theta }_j\cdot \varvec{\Theta }_i^*d\theta . \end{aligned} \end{aligned}$$

Likewise,

$$\begin{aligned} \int \limits _{\partial \Omega _\delta }E_2(r,\theta )\text{ d }s=-\int \limits _{-\pi }^\pi E_{21}(\theta )+E_{22}(\theta )-E_{23}(\theta )d\theta , \end{aligned}$$

where for \(\textbf{e}_1=(\cos \theta ,\sin \theta )^t\) and \(\textbf{e}_2=(-\sin \theta ,\cos \theta )^t\),

$$\begin{aligned} \begin{aligned} E_{21}(\theta )&=(\textbf{e}_1\cdot \varvec{\Theta }_j)(\textbf{e}_1\cdot \varvec{\Theta }_i^*),\\ E_{22}(\theta )&=(\textbf{e}_2\cdot \varvec{\Theta }_j')(\textbf{e}_1\cdot \varvec{\Theta }_i^*),\\ E_{23}(\theta )&=(\textbf{e}_1\cdot \varvec{\Theta }_j)(\textbf{e}_2\cdot (\varvec{\Theta }_i^*)'). \end{aligned} \end{aligned}$$

Since \(\Omega =\lim _{\delta \rightarrow 0}\Omega _\delta \),

$$\begin{aligned} \begin{aligned} a_{ij}&=\lim _{\delta \rightarrow 0}\int \limits _{\Omega _\delta }{\mathbb {L}}{\mathbf \Phi }_j\cdot {\mathbf \Phi }_i^*-{\mathbf \Phi }_j\cdot {\mathbb {L}}{\mathbf \Phi }_i^*{\textrm{d}}\textbf{x}\\&=-\int \limits _{-\pi }^\pi \varvec{\Theta }_j\cdot \varvec{\Theta }_i^*+\nu _1(E_{21}+E_{22}-E_{23})d\theta . \end{aligned} \end{aligned}$$

Therefore, \(a_{11}=a_{22}=-32(\nu _1+2)(\nu _1+1)\pi \) and \(a_{12}=a_{21}=0\). Hence, by (6.5), (4.5) follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kweon, J.R., Lee, T.Y. Cut Singularity of Compressible Stokes Flow. Z. Angew. Math. Phys. 74, 171 (2023). https://doi.org/10.1007/s00033-023-02066-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02066-x

Keywords

Mathematics Subject Classification

Navigation