Skip to main content
Log in

Asymptotic stability of a nonlinear wave for the compressible Navier–Stokes–Korteweg equations in the half space

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the time-asymptotic stability of a nonlinear wave for the outflow problem of the isentropic compressible Navier–Stokes–Korteweg equations in the half space. Under some suitable assumptions on the spatial-asymptotic states and boundary data, the time-asymptotic profile is a nonlinear wave which is the superposition of a stationary solution and a rarefaction wave. Employing the \(L^{2}\)-energy method and the decay (in both time and space variables) estimates of each component of the nonlinear wave, we prove that this nonlinear wave is time asymptotically stable under a small initial perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication and shallow water systems. Commun. Partial Differ. Equ. 28, 843–868 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bian, D.-F., Yao, L., Zhu, C.-J.: Vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier-Stokes equations. SIAM J. Math. Anal. 46, 1633–1650 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Chen, Z.-Z.: Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 394, 438–448 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chen, Z.-Z., Chai, X.-J., Dong, B.-Q., Zhao, H.-J.: Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data. J. Differ. Equ. 259, 4376–4411 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Charve, F., Haspot, B.: Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system. SIMA J. Math. Anal. 45, 469–494 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Z.-Z., He, L., Zhao, H.-J.: Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 422, 1213–1234 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Z.-Z., Li, Y.-P.: Asymptotic behavior of solutions to an impermeable wall problem of the compressible fluid models of Korteweg type with density-dependent viscosity and capillarity. SIAM J. Math. Anal. 53, 1434–1473 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Z.-Z., Li, Y.-P., Sheng, M.-D.: Asymptotic stability of viscous shock profiles for the 1D compressible Navier-Stokes-Korteweg system with boundary effect. Dyn. Partial Differ. Equ. 16, 225–251 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Cai, H., Tan, Z., Xu, Q.-J.: Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete Contin. Dyn. Syst. 36, 611–629 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non linéaire 18, 97–133 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Dunn, J.E., Serrin, J.: On the thermodynamics of interstital working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    MATH  Google Scholar 

  12. Fan, L., Liu, H., Wang, T., Zhao, H.-J.: Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation. J. Differ. Equ. 257, 3521–3553 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Germain, P., LeFloch, P.G.: Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model. Comm. Pure Appl. Math. 69, 3–61 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Haspot, B.: Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension. Methods Appl. Anal. 20, 141–164 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13, 223–249 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Haspot, B.: Existence of global strong solution for Korteweg system with large infinite energy initial data. J. Math. Anal. Appl. 438, 395–443 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Hattori, H., Li, D.: Solutions for two dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25, 85–98 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Hattori, H., Li, D.: Golobal solutions of a high dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Heida, M., Málek, J.: On compressible Korteweg fluid-like materials. Int. J. Eng. Sci. 48, 1313–1324 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Hong, H.: Stationary solutions to outflow problem for 1-D compressible fluid models of Korteweg type: existence, stability and convergence rate. Nonlinear Anal. Real World Appl. 53, 103055 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Hong, H., Wang, T.: Stability of stationary solutions to the inflow problem for full compressible Navier-Stokes equations with a large initial perturbation. SIAM J. Math. Anal. 49, 2138–2166 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Hou, X.-F., Peng, H.-Y., Zhu, C.-J.: Global classical solutions to the 3D Navier-Stokes-Korteweg equations with small initial energy. Anal. Appl. 16, 55–84 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Huang, F.-M., Hong, H., Shi, X.-D.: Existence of smooth solutions for the compressible barotropic Navier-Stokes-Korteweg system without increasing pressure law. Math. Meth. Appl. Sci. 43, 5073–5096 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Huang, F.-M., Li, J., Shi, X.: Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space. Commun. Math. Sci. 8, 639–654 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Huang, F.-M., Matsumura, A.: Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equations. Commun. Math. Phys. 289, 841–861 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Huang, F.-M., Matsumura, A., Shi, X.-D.: Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas. Commun. Math. Phys. 239, 261–285 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Huang, F.-M., Qin, X.: Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation. J. Differ. Equ. 246, 4077–4096 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Kobayashi, T., Tsuda, K.: Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition. Asymptot. Anal. 121, 195–217 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Korteweg, D.J.: Sur la forme que prennent les équations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densité. Arch. Neerl. Sci. Exactes Nat. Ser. II(6), 1–24 (1901)

    MATH  Google Scholar 

  30. Kotschote, M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non linéaire 25, 679–696 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 63, 21–51 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Kawashima, S., Nishibata, S., Zhu, P.-C.: Asympotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space. Commun. Math. Phys. 240, 483–500 (2003)

    MATH  Google Scholar 

  33. Kawashima, S., Zhu, P.-C.: Asymptotic stability of rarefaction wave for the Navier-Stokes equations for a compressible fluid in the half space. Arch. Rati. Mech. Anal. 194, 105–132 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Kawashima, S., Zhu, P.-C.: Asymptotic stability of nonlinear wave for the commpressible Navier-Stokes equations in the half space. J. Differ. Equ. 244, 3151–3179 (2008)

    MATH  Google Scholar 

  35. Li, Y.-P.: Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force. J. Math. Anal. Appl. 388, 1218–1232 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y.-P., Luo, Z.: Zero-capillarity-viscosity limit to rarefaction waves for the one-dimensional compressible Navier-Stokes-Korteweg equations. Math. Meth. Appl. Sci. 39, 5513–5528 (2016)

    MATH  Google Scholar 

  37. Li, Y.-P., Tang, J., Yu, S.-Q.: Asymptotic stability of rarefaction wave for the compressible Navier-Stokes-Korteweg equations in the half space. Proc. Roy. Soc. Edinburgh Sect. A. 152, 756–779 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Li, Y.-P., Zhu, P.-C.: Zero-viscosity-capillarity limit to rarefaction wave with vacuum for the compressible Navier-Stokes-Korteweg equations. J. Math. Phys. 61, 111501 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Li, Y.-P., Zhu, P.-C.: Asymptotic stability of the stationary solution to the Navier-Stokes-Korteweg equations of compressible fluids. Nonlinear Anal. Real World Appl. 57, 103193 (2021)

    MATH  Google Scholar 

  40. Matsumura, A.: Inflow and outflows problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Methods Appl. Anal. 8, 645–666 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Matsumura, A., Nishihara, K.: Global asymptotics toward rarefaction waves for solution of the viscous \(p\)-system with boundary effect. Quart. Appl. Math. 58, 69–83 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Matsumura, A., Nishihara, K.: Large-time behavior of solutions to an inflow problem in the half space for a one-dimensional isentropic model system for compressible viscous gas. Commun. Math. Phys. 222, 449–474 (2001)

    MATH  Google Scholar 

  43. Matsumura, A., Mei, M.: Convergence to traveling front of solutions of the \(p\)-system with viscosity in the presence of a boundary. Arch. Ration. Mech. Anal. 146, 1–22 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Qin, X.-H., Wang, Y.: Stability of wave patterns to the inflow problem of full compressible Navier-Stokes equations. SIAM J. Math. Anal. 41, 2057–2087 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Qin, X.-H., Wang, Y.: Large time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations. SIAM J. Math. Anal. 43, 341–366 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Smoller, J.: Shock waves and reaction-diffusion equation. Springer, New York (1983)

    MATH  Google Scholar 

  47. Tsyganov, E.: Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure. J. Differ. Equ. 245, 3936–3955 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Tan, Z., Wang, Y.: Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in \({\mathbb{R} }^3\). Commun. Math. Sci. 10, 1207–1223 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Tan, Z., Wang, H.-Q., Xu, J.-K.: Global existence and optimal \(L^2\) decay rate for the strong solutions to the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 390, 181–187 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Tan, Z., Zhang, R.-F.: Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 65, 279–300 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Van der Waals, J.D.: Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung. Z. Phys. Chem. 13, 657–725 (1894)

    Google Scholar 

  52. Wang, Y.-J., Tan, Z.: Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 379, 256–271 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Wang, W.-J., Wang, W.-K.: Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force. Dis. Contin. Dyn. Syst. 35, 513–536 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for valuable comments which greatly improved our original manuscript. Li is supported in part by the National Natural Science Foundation of China (Grant No. 12171258). Chen is supported in part by the National Natural Science Foundation of China (Grant No. 12171001) and the Support Program for Outstanding Young Talents in Universities of Anhui Province (Grant No. gxyqZD2022007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzheng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, R. & Chen, Z. Asymptotic stability of a nonlinear wave for the compressible Navier–Stokes–Korteweg equations in the half space. Z. Angew. Math. Phys. 74, 167 (2023). https://doi.org/10.1007/s00033-023-02064-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02064-z

Keywords

Mathematics Subject Classification

Navigation