Skip to main content
Log in

Blow-up and instability of standing waves for the NLS with a point interaction in dimension two

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present note, we study the focusing NLS equation in dimension two with a point interaction in the supercritical regime, showing two results. After obtaining the (nonstandard) virial formula, we exhibit a set of initial data that shows blow-up. Moreover, we show that the standing waves \(e^{i\omega t} \varphi _\omega \) corresponding to ground states \(\varphi _\omega \) of the action functional are strongly unstable, at least for sufficiently high \(\omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.:Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (1972)

  2. Adami, R., Boni, F., Carlone, R., Tentarelli, L.: Ground states for the planar NLSE with a point defect as minimizers of the constrained energy. Calc. Var. PDE 61, 195 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adami, R., Carlone, R., Correggi, M., Tentarelli, L.: Blow-up for the pointwise NLS in dimension two: absence of critical power. J. Differ. Equ. 269(1), 1–37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albeverio, S., Gesztesy, F., Högh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  5. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Cacciapuoti, C., Finco, D., Noja, D.: Well posedness of the nonlinear Schrödinger equation with isolated singularities. J. Differ. Equ. 305, 288–318 (2021)

    Article  MATH  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics. AMS, Providence (2003)

    Google Scholar 

  8. Cuccagna, S., Maeda, M.: On stability of small solitons of the 1-D NLS with a trapping delta potential. SIAM J. Math. Anal. 51(6), 4311–4331 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukaya, N., Georgiev, V., Ikeda, M.: On stability and instability of standing waves for 2d-nonlinear Schrödinger equations with point interaction. J. Differ. Equ. 321, 258–295 (2022)

    Article  MATH  Google Scholar 

  10. Fukaya, N., Ohta, M.: Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential. arXiv:1804.02127 (2018)

  11. Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integr. Equ. 16(6), 691–706 (2003)

    MATH  Google Scholar 

  12. Fukuizumi, R., Ohta, M., Ozawa, T.: Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(5), 837–845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goloshchapova, N., Ohta, M.: Blow-up and strong instability of standing waves for the NLS-\(\delta \) equation on a star graph. Nonlinear Anal. 196, 111753 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodman, R.H., Holmes, P.J., Weinstein, M.I.: Strong NLS soliton-defect interactions. Phys. D 192, 215–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Coz, S., Fukuizumi, R., Fibich, G., Ksherim, B., Sivan, Y.: Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D 237(8), 1103–1128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masaki, S., Murphy, J., Segata, J.: Stability of small solitary waves for the 1d NLS with an attractive delta potential. Anal. PDE 13, 1099–1128 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Masaki, S., Murphy, J., Segata, J.: Asymptotic stability of solitary waves for the 1d NLS with an attractive delta potential. DCDS 43, 2137–2185 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with delta potential. Sao Paulo J. Math. Sci. 13, 465–474 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ohta, M., Yamaguchi, T.: Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential. RIMS Kokyuroku Bessatsu B 56, 79–92 (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their friend and colleague Claudio Cacciapuoti for useful discussions.

Funding

D. N. acknowledges the support of EC grant IPaDEGAN (MSCA-RISE-778010), and D.F and D.N acknowledge the support of the Gruppo Nazionale di Fisica Matematica (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Contributions

Both DF and DN wrote and reviewed the manuscript.

Corresponding author

Correspondence to Domenico Finco.

Ethics declarations

Ethics approval and consent to participate:

Not applicable.

Consent for publication:

Not applicable.

Availability of data and materials:

Not applicable.

Competing interests:

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finco, D., Noja, D. Blow-up and instability of standing waves for the NLS with a point interaction in dimension two. Z. Angew. Math. Phys. 74, 162 (2023). https://doi.org/10.1007/s00033-023-02056-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02056-z

Keywords

Mathematics Subject Classification

Navigation