Skip to main content
Log in

Global Well-Posedness, Blow-Up and Stability of Standing Waves for Supercritical NLS with Rotation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the focusing mass supercritical nonlinear Schrödinger equation with rotation

$$\begin{aligned} iu_{t}=-\frac{1}{2}\Delta u+\frac{1}{2}V(x)u-|u|^{p-1}u+L_{\Omega }u,\quad (x,t)\in {\mathbb {R}}^{N}\times {\mathbb {R}}, \end{aligned}$$

where \(N=2\) or 3 and V(x) is an anisotropic harmonic potential. Here \(L_{\Omega }\) is the quantum mechanical angular momentum operator. We establish conditions for global existence and blow-up in the energy space. Moreover, we prove strong instability of standing waves under certain conditions on the rotation and the frequency of the wave. Finally, we construct orbitally stable standing waves solutions by considering a suitable local minimization problem. Those results are obtained for nonlinearities which are \(L^{2}\)-supercritical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoine, X., Tang, Q., Zhang, Y.: On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonelli, P., Marahrens, D., Sparber, C.: On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete Contin. Dyn. Syst. 32, 703–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose-Einstein condensates. Lett. Math. Phys. 109 (2019)

  4. Ardila, A., Cely, L., Squassina, M.: Logarithmic Bose-Einstein condensates with harmonic potential. Asymptot. Anal. 116, 27–40 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, (2013)

  6. Basharat, N., Hajaiej, H., Hu, Y., Zheng, S.: Threshold for blowup and stability for nonlinear Schrödinger equation with rotation. arXiv:2002.04722 (2020)

  7. Bellazzini, J., Boussaid, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353, 229–339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. American Mathematical Society, Courant Institute of Mathematical Sciences (2003)

  9. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation. Commun. Math. Phys. 334, 1573–1615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fetter, A.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81 (2009)

  11. Fukuizumi, R.: Stability and instability of standing waves for the Schrödinger equation with harmonic potential. Discrete Contin. Dyn. Syst. 7, 525–544 (2000)

    Article  MATH  Google Scholar 

  12. Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with potential. Differ. Integral Equ. 16 (2003)

  13. Guo, Q.: Nonlinear Schrödinger equations with coupled Hartree-type terms and rotation. J. Math. Anal. Appl. 383, 137–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express 1 (2007)

  15. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equations. Commun. Math. Phys. 282, 435–467 (2008)

    Article  MATH  Google Scholar 

  16. Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieb, E., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matsumoto, H., Ueki, N.: Spectral analysis of Schrödinger operators with magnetic fields. J. Funct. Anal. 140, 218–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mohamed, A., Raikov, G.: On the spectral theory of the Schrödinger operator with electromagnetic potential, in Pseudo-differential calculus and mathematical physics, Berlin, A.V., ed., vol. 5 of Math. Top, 1994, pp. 298–390

  20. Ohta, M.: Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential. Funkcial. Ekvac 61 (2018)

  21. Seiringer, R.: Gross-Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229, 491–509 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for useful comments and suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex H. Ardila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardila, A.H., Hajaiej, H. Global Well-Posedness, Blow-Up and Stability of Standing Waves for Supercritical NLS with Rotation. J Dyn Diff Equat 35, 1643–1665 (2023). https://doi.org/10.1007/s10884-021-09976-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09976-2

Keywords

Mathematics Subject Classification

Navigation