Skip to main content
Log in

Nonclassical cosserat bending deformation of foams via holographic interferometry

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Nonclassical bending deformation in two foams was investigated using holographic interferometry. Sigmoid bulge deformation of the lateral surface of square cross-sectional bars was observed. Cosserat elastic constants inferred are consistent with values obtained via size effect experiments for dense polyurethane foam. For open cell copper foam, both bulge measurements and size effects implied a large Cosserat characteristic length and a large coupling number. Limitations of the available fourth-order bending analysis were encountered in this regime of strong effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Timoshenko, S.P., Goodier, J.N.: Theory of elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  2. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  3. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  4. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975)

    Article  MATH  Google Scholar 

  5. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  6. Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Phil. Mag. 96(2), 93–111 (2016)

    Article  Google Scholar 

  7. Rueger, Z., Lakes, R.S.: Experimental study of elastic constants of a dense foam with weak Cosserat coupling. J. Elast. 137(1), 101–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018)

    Article  Google Scholar 

  9. Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)

    Article  Google Scholar 

  10. Beveridge, A.J., Wheel, M.A., Nash, D.H.: The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50, 246–255 (2013)

    Article  Google Scholar 

  11. Mora, R., Waas, A.M.: Measurement of the Cosserat constant of circular cell polycarbonate honeycomb. Philos. Mag. A 80, 1699–1713 (2000)

    Article  Google Scholar 

  12. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  13. Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012)

    Article  Google Scholar 

  14. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio-1. Int. J. Mech. Sci. 39, 305–314 (1997)

    Article  MATH  Google Scholar 

  15. Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  16. Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross section. Int. J. Solids Struct. 23(4), 485–503 (1987)

    Article  MATH  Google Scholar 

  17. Drugan, W.J., Lakes, R.S.: Torsion of a cosserat elastic bar with square cross-section: theory and experiment. Zeitschrift fur angewandte Mathematik und Physik (ZAMP) 69(2), 24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, H.C., Lakes, R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986)

    Article  Google Scholar 

  19. Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985)

    Article  Google Scholar 

  20. Anderson, W.B., Lakes, R.S., Smith, M.C.: Holographic evaluation of warp in the torsion of a bar of cellular solid. Cell. Polym. 14, 1–13 (1995)

    Google Scholar 

  21. Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015). ((8 pages))

    Article  Google Scholar 

  22. Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. ASME J. Appl. Mech. 45(2), 429–431 (1978)

    Article  Google Scholar 

  23. Friis, E.A., Lakes, R.S., Park, J.B.: Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 23, 4406–4414 (1988)

    Article  Google Scholar 

  24. Schumann, W., Dubas, M.: Holographic interferometry. Springer-Verlag, Berlin (1979)

    Book  Google Scholar 

  25. Chen, C.P., Lakes, R.S.: Holographic study of non-affine deformation in copper foam with a negative Poisson’s ratio -0.8. Scripta Metall et Mater. 29, 395–399 (1993)

    Article  Google Scholar 

  26. Koiter, W.T.: Couple-stresses in the theory of elasticity, parts I and II. Proc. Koninklijke Ned. Akad. Wetenshappen 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sole author. Did all of it.

Corresponding author

Correspondence to R. S. Lakes.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakes, R.S. Nonclassical cosserat bending deformation of foams via holographic interferometry. Z. Angew. Math. Phys. 74, 153 (2023). https://doi.org/10.1007/s00033-023-02046-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02046-1

Mathematics Subject Classification

Navigation