Skip to main content
Log in

Mathematical insights into the influence of interventions on sexually transmitted diseases

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish a mathematical model to analyze what factors cause the epidemics of sexually transmitted diseases (STDs) and how to eliminate or mitigate them. According to the level of prevention awareness, we divide the susceptible population into two groups of individuals, whose behavior, population size, and recruitment rate are affected by the interventions. First, the threshold, \(R_0\), of STDs model is obtained. If \(R_0 < 1\), the disease-free equilibrium is globally asymptotically stable. We also obtain the conditions for switching the equilibrium state of the model among disease-free equilibrium, endemic equilibrium, and limit cycle. Second, the threshold and transcritical bifurcation show that interventions for high-risk sexual behaviors of high-risk susceptible individuals can eliminate STDs. Additionally, sex education, influenced by the size of infected individuals and by interventions, can effectively cut down the size of STDs. Third, extending the survival time of the infected individual may prolong the time to end STDs unless they reject high-risk sexual behavior. Fourth, we analyze the existence, stability, and direction of Hopf bifurcation, which may explain the periodic oscillation in the size of infected population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO TEAM, Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections for the period 2022–2030

  2. Seidu, A.-A., Darteh, E.K.M., Kumi-Kyereme, A., Dickson, K.S., Ahinkorah, B.O.: Paid sex among men in sub-Saharan Africa: analysis of the demographic and health survey. SSM-Popul. Health 11, 100459 (2020)

    Article  Google Scholar 

  3. Song, Y., Ji, C.-Y.: Sexual intercourse and high-risk sexual behaviours among a national sample of urban adolescents in China. J. Public Health 32(3), 312–321 (2010)

    Article  Google Scholar 

  4. Goldfarb, E.S., Lieberman, L.D.: Three decades of research: the case for comprehensive sex education. J. Adolesc. Health 68(1), 13–27 (2021)

    Article  Google Scholar 

  5. Lindberg, L.D., Kantor, L.M.: Adolescents’ receipt of sex education in a nationally representative sample, 2011–2019. J. Adolesc. Health 70(2), 290–297 (2022)

    Article  Google Scholar 

  6. Li, G., Jiang, Y., Zhang, L.: HIV upsurge in China’s students. Science 364(6442), 711 (2019)

    Article  Google Scholar 

  7. Starkman, N., Rajani, N.: The case for comprehensive sex education. AIDS Patient Care STDS 16(7), 313–318 (2002)

    Article  Google Scholar 

  8. Bauch, C.T.: Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B Biol. Sci. 272(1573), 1669–1675 (2005)

    Article  Google Scholar 

  9. Pharaon, J., Bauch, C.T.: The influence of social behaviour on competition between virulent pathogen strains. J. Theor. Biol. 455, 47–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Levin, S.A., Hallam, T.G., Gross, L.J.: Applied Mathematical Ecology, vol. 18. Springer, Berlin (2012)

    Google Scholar 

  11. National Center for AIDS/STD Control and Prevention, China CDC. https://www.chinaaids.cn/qsnazbfk/sdgz/201702/t20170224_138582.htm. Accessed 15 Oct 2022 (2022)

  12. Centers for Disease Control and Prevention. https://www.cdc.gov/std/life-stages-populations/adolescents-youngadults.htm. Accessed 13 Oct 2022 (2022)

  13. Aral, S.O.: Sexually transmitted diseases: magnitude, determinants and consequences. Int. J. STD AIDS 12(4), 211–215 (2001)

    Article  Google Scholar 

  14. Gao, S., Martcheva, M., Miao, H., Rong, L.: A dynamic model to assess human papillomavirus vaccination strategies in a heterosexual population combined with men who have sex with men. Bull. Math. Biol. 83, 1–36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghosh, I., Tiwari, P.K., Samanta, S., Elmojtaba, I.M., Al-Salti, N., Chattopadhyay, J.: A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Math. Biosci. 306, 160–169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sagar, V., Zhao, Y.: Collective effect of personal behavior induced preventive measures and differential rate of transmission on spread of epidemics. Chaos Interdiscip. J. Nonlinear Sci. 27(2), 023115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, K., Zhao, H., Wang, H.: Traveling waves for a diffusive mosquito-borne epidemic model with general incidence. Z. Angew. Math. Phys. 73(1), 31 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, Z.: Dynamical Modeling and Analysis of Epidemics. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  19. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Springer, Berlin (1989)

    MATH  Google Scholar 

  20. Yang, R., Wang, F., Jin, D.: Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food. Math. Methods Appl. Sci. 45(16), 9967–9978 (2022)

    Article  MathSciNet  Google Scholar 

  21. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carr, J.: Applications of Centre Manifold Theory, vol. 35. Springer, Berlin (2012)

    MATH  Google Scholar 

  23. Ye, Y., Zhao, Y.: Bifurcation analysis of a delay-induced predator-prey model with Allee effect and prey group defense. Int. J. Bifurc. Chaos 31(10), 2150158 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiang, C., Huang, J., Wang, H.: Linking bifurcation analysis of Holling–Tanner model with generalist predator to a changing environment. Stud. Appl. Math

  25. Yuan, P., Zhu, H.: The nilpotent bifurcations in a model for generalist predatory mite and pest leafhopper with stage structure. J. Differ. Equ. 321, 99–129 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, J., Zhao, Y., Ye, Y., Bao, Y.: Bifurcation analysis of a fractional-order simplicial SIRS system induced by double delays. Int. J. Bifurc. Chaos 32(05), 2250068 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawrence, P.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    MATH  Google Scholar 

  28. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (2003)

    MATH  Google Scholar 

  30. Jiang, J., Liang, F., Wu, W., Huang, S.: On the first Liapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles. J. Differ. Equ. 284, 183–218 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, R., Nie, C., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity. Nonlinear Dyn. 110(1), 879–900 (2022)

    Article  Google Scholar 

  32. World Health Organization. https://www.who.int/news-room/feature-stories/detail/four-curable-sexually-transmitted-infections---all-you-need-to-know. Accessed 20 Oct 2022 (2019)

  33. Wu, Z., Chen, J., Scott, S.R., McGoogan, J.M.: History of the HIV epidemic in China. Curr. HIV/AIDS Rep. 16, 458–466 (2019)

    Article  Google Scholar 

  34. Chinese Centers for Disease Control and Prevention. https://www.chinacdc.cn/jkzt/sthd_3844/slhd_12884/202203/t20220323_257909.html. Accessed 5 Oct 2022 (2022)

  35. Coates, T.J., Richter, L., Caceres, C.: Behavioural strategies to reduce HIV transmission: how to make them work better. Lancet 372(9639), 669–684 (2008)

    Article  Google Scholar 

  36. Ajayi, A.I., Ismail, K.O., Akpan, W.: Factors associated with consistent condom use: a cross-sectional survey of two Nigerian universities. BMC Public Health 19(1), 1–11 (2019)

    Article  Google Scholar 

  37. Hyman, J.M., Stanley, E.A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90(1–2), 415–473 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, C.-L., Gao, S., Li, X.-Z., Martcheva, M.: Modeling syphilis and HIV coinfection: a case study in the USA. Bull. Math. Biol. 85(3), 20 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, J., Hao, W., Jin, Z.: The dynamics of sexually transmitted diseases with men who have sex with men. J. Math. Biol. 84, 1–25 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Deng, Q., Guo, T., Qiu, Z., Chen, Y.: Towards a new combination therapy with vectored immunoprophylaxis for HIV: modeling “shock and kill’’ strategy. Math. Biosci. 355, 108954 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chinese Centers for Disease Control and Prevention. http://www.nhc.gov.cn/jkj/s3578/202208/f470f0abf544436d901c2660b06f3911.shtml. Accessed 4 Oct 2022 (2022)

  42. Murray, J.D.: Mathematical Biology. Springer, Berlin (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

LX is funded by the National Natural Science Foundation of China 12171116 and Fundamental Research Funds for the Central Universities of China 3072020CFT2402 and 3072022TS2404. XL is funded by the National Natural Science Foundation of China 12271143. We thank Dr. Hao Wang for the valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

KZ and LX investigated the model and wrote the manuscript. XL and DH checked the model, analysis, and numerical simulations. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ling Xue or Daihai He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 3.3

Jacobian matrix \(J\left( {{E_{1}}} \right) \) is

$$\begin{aligned} {J_{{a_{ij}}}}\left( {{E_1}} \right) = {\left( {\begin{array}{*{20}{c}} {\frac{{ - \beta {{\bar{I}}_1} - \beta \eta {{\bar{I}}_1}^2}}{{{{\left[ {1 + \eta \left( {{{\bar{S}}_1} + {{\bar{I}}_1}} \right) } \right] }^2}}} - \tau {{\bar{I}}_1} - d}&{}{\frac{{ - \beta {{\bar{S}}_1} - \beta \eta \bar{S}_1^2}}{{{{\left[ {1 + \eta \left( {{{\bar{S}}_1} + {{\bar{I}}_1}} \right) } \right] }^2}}} - \tau {{\bar{S}}_1}}&{}{ - \Lambda }\\ {\frac{{\beta {{\bar{I}}_1} + \beta \eta \bar{I}_1^2}}{{{{\left[ {1 + \eta \left( {{{\bar{S}}_1} + {{\bar{I}}_1}} \right) } \right] }^2}}}}&{}{ - \frac{{\beta \eta {{\bar{S}}_1}{{\bar{I}}_1}}}{{{{\left[ {1 + \eta \left( {{{\bar{S}}_1} + {{\bar{I}}_1}} \right) } \right] }^2}}}}&{}0\\ 0&{}{\frac{{rm\rho }}{{{K_2}}}{{\bar{x}}_1}\left( {1 - \frac{{{{\bar{x}}_1}}}{{{K_1}}}} \right) }&{}0 \end{array}} \right) _{3 \times 3}}. \end{aligned}$$

For equilibrium \({E_1}\), when \({{\bar{x}}_1} \ne {K_1}\) and \({{\bar{x}}_1} \ne 0\), its characteristic equation is

$$\begin{aligned} \lambda _{10}^3 - {T_{10}}\lambda _{10}^2 + {H_{10}}{\lambda _{10}} + {D_{10}} = 0, \end{aligned}$$
(5.1)

where \({T_{10}} = {a_{11\left( {{E_1}} \right) }} + {a_{22\left( {{E_1}} \right) }} < 0\), \({H_{10}} = {a_{11\left( {{E_1}} \right) }}{a_{22\left( {{E_1}} \right) }} - {a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}>0\), and \({D_{10}} = {a_{21\left( {{E_1}} \right) }}{a_{32\left( {{E_1}} \right) }}\Lambda \).

According to Routh–Hurwitz criterion [42], if \({{\bar{x}}_1} > {K_1}\), \({E_1}\) is a saddle; if \({{\bar{x}}_1} < {K_1}\) and \( {T_{10}}{H_{10}} + {D_{10}} < 0\), \({E_1}\) is a locally stable node; if \( {{\bar{x}}_1} < {K_1}\) and \({T_{10}}{H_{10}} + {D_{10}} > 0\), Eq. (5.1) has two positive roots and a negative root; then, \({E_1}\) is a saddle.

When \({{\bar{x}}_1} = {K_1}\) or \({{\bar{x}}_1} = 0\), the characteristic equation can be represented as follows

$$\begin{aligned} \lambda _{10}^2 - {T_{10}}{\lambda _{10}} + {H_{10}} = 0, \end{aligned}$$
(5.2)

then matrix \(J\left( {{E_1}} \right) \) has one zero eigenvalue and two negative eigenvalues, \({ \lambda _1 }\), \({ \lambda _2}\), with corresponding eigenvectors \({T_{12}} = \left( {{V_{111}},{V_{112}},{V_{113}}} \right) \), where

$$\begin{aligned} {V_{111}} = \left( {\begin{array}{*{20}{c}} 1\\ {\frac{{{a_{21\left( {{E_1}} \right) }}}}{{{\lambda _1} - {a_{22\left( {{E_1}} \right) }}}}}\\ 0 \end{array}} \right) , {V_{112}} = \left( {\begin{array}{*{20}{c}} 1\\ {\frac{{{a_{21\left( {{E_1}} \right) }}}}{{{\lambda _2} - {a_{22\left( {{E_1}} \right) }}}}}\\ 0 \end{array}} \right) , {V_{113}} = \left( {\begin{array}{*{20}{c}} 1\\ { - \frac{{{a_{21\left( {{E_1}} \right) }}}}{{{a_{22\left( {{E_1}} \right) }}}}}\\ {\frac{{{a_{11\left( {{E_1}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}}}{{\Lambda {a_{22\left( {{E_1}} \right) }}}}} \end{array}} \right) . \end{aligned}$$

We make the following transformations

$$\begin{aligned} \bar{S} = S - {\bar{S}_1},\ \bar{I} = I - {\bar{I}_1},\ \bar{X} = x - {\bar{x}_1}, \end{aligned}$$

and

$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {\bar{Y}}\\ {\bar{Z}}\\ {\bar{X}} \end{array}} \right) = {T_{12}}\left( {\begin{array}{*{20}{c}} {\tilde{S}}\\ {\tilde{I}}\\ {\tilde{X}} \end{array}} \right) , \end{aligned}$$

then the system can be described as follows

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\mathop {\tilde{S}}\limits ^. = {\lambda _1}\tilde{S} + \sum \limits _{i,j,k \in \mathrm{{N}}}^{i + j + k = 2} {{a_{ijk}}} {{\tilde{S}}^i}{{\tilde{I}}^j}{{\tilde{X}}^k} + o\left( {{{\left| {\tilde{S},\tilde{I},\tilde{X}} \right| }^3}} \right) ,}\\ {\mathop {\tilde{I}}\limits ^. = {\lambda _2}\tilde{I} + \sum \limits _{i,j,k \in \mathrm{{N}}}^{i + j + k = 2} {{b_{ijk}}} {{\tilde{S}}^i}{{\tilde{I}}^j}{{\tilde{X}}^k} + o\left( {{{\left| {\tilde{S},\tilde{I},\tilde{X}} \right| }^3}} \right) ,}\\ {\mathop {\tilde{X}}\limits ^. = \sum \limits _{i,j,k \in \mathrm{{N}}}^{i + j + k = 2} {{c_{ijk}}} {{\tilde{S}}^i}{{\tilde{I}}^j}{{\tilde{X}}^k} + o\left( {{{\left| {\tilde{S},\tilde{I},\tilde{X}} \right| }^3}} \right) .} \end{array}} \right. \end{aligned}$$

When \({{\bar{x}}_1} = {K_1}\), we have

$$\begin{aligned} {{{ c}_{002}} = \frac{{{a_{21\left( {{E_1}} \right) }}}}{{{a_{22\left( {{E_1}} \right) }}}}\left( {\frac{{{a_{11\left( {{E_1}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}}}{{\Lambda {a_{22\left( {{E_1}} \right) }}}}} \right) \frac{{\Lambda {a_{22\left( {{E_1}} \right) }}}}{{{a_{11\left( {{E_1}} \right) }}{a_{22\left( {{E_1}} \right) }} - {\Lambda ^2}{a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}}}\frac{{mr\rho }}{{{K_2}}} \ne 0;} \end{aligned}$$

when \({{\bar{x}}_1} = 0\), we have

$$\begin{aligned} {{{ c}_{002}} = - \frac{{{a_{21\left( {{E_1}} \right) }}}}{{{a_{22\left( {{E_1}} \right) }}}}\left( {\frac{{{a_{11\left( {{E_1}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}}}{{\Lambda {a_{22\left( {{E_1}} \right) }}}}} \right) \frac{{\Lambda {a_{22\left( {{E_1}} \right) }}}}{{{a_{11\left( {{E_1}} \right) }}{a_{22\left( {{E_1}} \right) }} - {\Lambda ^2}{a_{12\left( {{E_1}} \right) }}{a_{21\left( {{E_1}} \right) }}}}\frac{{mr\rho }}{{{K_2}}} \ne 0.} \end{aligned}$$

Hence, \({E_{1}}\) is a saddle node of codimension 1 [27]. The proof is complete. \(\square \)

Appendix B: Proof of Theorem 3.4

When \({{\bar{I}}_i} < \frac{{{K_2}}}{m}\) or \({{\bar{I}}_i} > \frac{{{K_2}}}{m}\), the results can be easily verified. When \({{\bar{I}}_i} = \frac{{{K_2}}}{m}\), we have

$$\begin{aligned} {J_{{a_{m,n}}}}\left( {{E_i}} \right) = {\left( {\begin{array}{*{20}{c}} {\frac{{ - \beta {I_i} - \beta \eta I_i^2}}{{{{\left[ {1 + \eta \left( {{S_i} + {I_i}} \right) } \right] }^2}}} - \tau {I_i} - d}&{}{\frac{{ - \beta {S_i} - \beta \eta S_i^2}}{{{{\left[ {1 + \eta \left( {{S_i} + {I_i}} \right) } \right] }^2}}} - \tau {S_i}}&{}{ - \Lambda }\\ {\frac{{\beta {I_i} + \beta \eta I_i^2}}{{{{\left[ {1 + \eta \left( {{S_i} + {I_i}} \right) } \right] }^2}}}}&{}{ - \frac{{\beta \eta {S_i}{I_i}}}{{{{\left[ {\eta \left( {{I_i} + {S_i}} \right) + 1} \right] }^2}}}}&{}0\\ 0&{}0&{}0 \end{array}} \right) _{3 \times 3}}. \end{aligned}$$

The characteristic equation is as follows

$$\begin{aligned} \lambda _{i}^2 - {T_{i}}{\lambda _{i}} + {H_{i}} = 0, \end{aligned}$$
(5.3)

where \({T_{i}} = {a_{11\left( {{E_i}} \right) }} + {a_{22\left( {{E_i}} \right) }} < 0\), \({H_{i}} = {a_{11\left( {{E_i}} \right) }}{a_{22\left( {{E_i}} \right) }} - {a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}>0\), then matrix \(J\left( {{E_i}} \right) \) has one zero eigenvalue and two negative eigenvalues, \({{\bar{\lambda }}_i}\), \({{\tilde{\lambda }}_i}\), with corresponding eigenvectors \({T_{i}} = \left( {{V_{i1}},{V_{i2}},{V_{i3}}} \right) \), where

$$\begin{aligned} {V_{i1}} = \left( {\begin{array}{*{20}{c}} 1\\ {\frac{{{a_{21\left( {{E_i}} \right) }}}}{{{{\bar{\lambda }}_i} - {a_{22\left( {{E_i}} \right) }}}}}\\ 0 \end{array}} \right) , {V_{i2}} = \left( {\begin{array}{*{20}{c}} 1\\ {\frac{{{a_{21\left( {{E_i}} \right) }}}}{{{{\tilde{\lambda }}_i} - {a_{22\left( {{E_i}} \right) }}}}}\\ 0 \end{array}} \right) , {V_{i3}} = \left( {\begin{array}{*{20}{c}} 1\\ { - \frac{{{a_{21\left( {{E_i}} \right) }}}}{{{a_{22\left( {{E_i}} \right) }}}}}\\ {\frac{{{a_{11\left( {{E_i}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}}}{{\Lambda {a_{22\left( {{E_i}} \right) }}}}} \end{array}} \right) . \end{aligned}$$

We make the following transformations successively

$$\begin{aligned} {{\bar{Y}_i}} = S - {S_i},\ {{\bar{Z}}_i} = I - {I_i},\ {{\bar{X}}_i} = x - {x_i}, \end{aligned}$$

and

$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {{{\bar{Y}}_i}}\\ {{{\bar{Z}}_i}}\\ {{{\bar{X}}_i}} \end{array}} \right) = {T_{i}}\left( {\begin{array}{*{20}{c}} {{{\hat{Y}}_i}}\\ {{{\hat{Z}}_i}}\\ {{{\hat{X}}_i}} \end{array}} \right) , \end{aligned}$$

then system (3.1) can be rewritten as canonical form

$$\begin{aligned} \left\{ \begin{array}{l} {{\dot{\hat{Y_i}}}} = {{\bar{\lambda }}_i}{{\hat{Y}}_i} + \sum \limits _{l,j,k \in \textrm{N}}^{l + j + k = 2} {{{\tilde{a}}_{ljk}}} \hat{Y}_i^l\hat{Z}_i^j\hat{X}_i^k + o\left( {{{\left| {{{\hat{Y}}_i},{{\hat{Z}}_i},{{\hat{X}}_i}} \right| }^3}} \right) ,\\ {{\dot{\hat{Z_i}}}} = {{\tilde{\lambda }}_i}{{\hat{Z}}_i} + \sum \limits _{l,j,k \in \textrm{N}}^{l + j + k = 2} {{{\tilde{b}}_{ljk}}} \hat{Y}_i^l\hat{Z}_i^j\hat{X}_i^k + o\left( {{{\left| {{{\hat{Y}}_i},{{\hat{Z}}_i},{{\hat{X}}_i}} \right| }^3}} \right) ,\\ {{\dot{\hat{X_i}}}} = \sum \limits _{l,j,k \in \textrm{N}}^{l + j + k = 2} {{{\tilde{c}}_{ljk}}} \hat{Y}_i^l\hat{Z}_i^j\hat{X}_i^k + o\left( {{{\left| {{{\hat{Y}}_i},{{\hat{Z}}_i},{{\hat{X}}_i}} \right| }^3}} \right) . \end{array} \right. \end{aligned}$$

when \(i = 2\), we have

$$\begin{aligned} {{\tilde{c}_{002}} = \frac{{{a_{21\left( {{E_i}} \right) }}}}{{{a_{22\left( {{E_i}} \right) }}}}\left( {\frac{{{a_{11\left( {{E_i}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}}}{{\Lambda {a_{22\left( {{E_i}} \right) }}}}} \right) \frac{{\Lambda {a_{22\left( {{E_i}} \right) }}}}{{{a_{11\left( {{E_i}} \right) }}{a_{22\left( {{E_i}} \right) }} - {\Lambda ^2}{a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}}}\frac{{mr\rho }}{{{K_2}}} \ne 0;} \end{aligned}$$

When \(i = 3\), we have

$$\begin{aligned} {{\tilde{c}_{002}} = - \frac{{{a_{21\left( {{E_i}} \right) }}}}{{{a_{22\left( {{E_i}} \right) }}}}\left( {\frac{{{a_{11\left( {{E_i}} \right) }}}}{\Lambda } - \frac{{{a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}}}{{\Lambda {a_{22\left( {{E_i}} \right) }}}}} \right) \frac{{\Lambda {a_{22\left( {{E_i}} \right) }}}}{{{a_{11\left( {{E_i}} \right) }}{a_{22\left( {{E_i}} \right) }} - {\Lambda ^2}{a_{12\left( {{E_i}} \right) }}{a_{21\left( {{E_i}} \right) }}}}\frac{{mr\rho }}{{{K_2}}} \ne 0.} \end{aligned}$$

Hence, \({E_{i}}\) is a saddle node of codimension 1. The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Xue, L., Li, X. et al. Mathematical insights into the influence of interventions on sexually transmitted diseases. Z. Angew. Math. Phys. 74, 151 (2023). https://doi.org/10.1007/s00033-023-02028-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02028-3

Keywords

Mathematics Subject Classification

Navigation