Skip to main content
Log in

New decouplers of fractal dimension and Hurst effects

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A new parametric class of covariance functions of wide-sense homogeneous and isotropic random fields on Euclidean spaces is presented. While the new class possesses uncoupled fractal and Hurst effects, it is shown to encompass the Generalized Cauchy and Dagum models. On the basis of the new functions, product-based covariance models are developed, along with parametric conditions guaranteeing a decoupling of fractal and Hurst effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mateu, J., Porcu, E., Nicolis, O.: A note on decoupling of local and global behaviours for the Dagum random field. Probab. Eng. Mech. 22(4), 320–329 (2007). https://doi.org/10.1016/j.probengmech.2007.05.002

    Article  Google Scholar 

  2. Stein, M.: Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1494-6

    Book  MATH  Google Scholar 

  3. Shen, L., Ostoja-Starzewski, M., Porcu, E.: Harmonic oscillator driven by random processes having fractal and Hurst effects. Acta Mech. 226(11), 3653–3672 (2015). https://doi.org/10.1007/s00707-015-1385-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Shen, L., Ostoja-Starzewski, M., Porcu, E.: Bernoulli-Euler beams with random field properties under random field loads: fractal and Hurst effects. Arch. Appl. Mech. 84(9), 1595–1626 (2014). https://doi.org/10.1007/s00419-014-0904-4

    Article  MATH  Google Scholar 

  5. Laudani, R., Ostoja-Starzewski, M.: Fracture of beams with random field properties: fractal and Hurst effects. Int. J. Solids Struct. 191, 243–253 (2020). https://doi.org/10.1016/j.ijsolstr.2019.12.002

    Article  MATH  Google Scholar 

  6. Nishawala, V.V., Ostoja-Starzewski, M., Leamy, M.J., Porcu, E.: Lamb’s problem on random mass density fields with fractal and Hurst effects. Proc. Math. Phys. Eng. 472(2196), 20160638 (2016). https://doi.org/10.1098/rspa.2016.0638

    Article  MathSciNet  MATH  Google Scholar 

  7. Nishawala, V.V., Ostoja-Starzewski, M.: Acceleration waves on random fields with fractal and Hurst effects. Wave Motion 74, 134–150 (2017). https://doi.org/10.1016/j.wavemoti.2017.07.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Laudani, R., Zhang, D., Faouzi, T., Porcu, E., Ostoja-Starzewski, M., Chamorro, L.: On streamwise velocity spectra model accounting for the fractal and long-memory effects. Phys. Fluids 33, 035116 (2017). https://doi.org/10.1063/5.0040453

    Article  Google Scholar 

  9. Jetti, Y.S., Ostoja-Starzewski, M.: Scaling in anti-plane elasticity on random shear modulus fields with fractal and Hurst effects. Fractal Fract. 5(4), 255 (2021). https://doi.org/10.3390/fractalfract5040255

    Article  Google Scholar 

  10. Ostoja-Starzewski, M., Laudani, R.: Violations of the Clausius–Duhem inequality in Couette flows of granular media. Proc. Math. Phys. Eng. 476, 20200207 (2021). https://doi.org/10.1098/rspa.2020.0207

    Article  MathSciNet  MATH  Google Scholar 

  11. Jetti, Y.S., Ostoja-Starzewski, M.: Elastic contact of random surfaces with fractal and Hurst effects. Proc. R. Soc. A. 478(2268), 20220384 (2022). https://doi.org/10.1098/rspa.2022.0384

    Article  MathSciNet  Google Scholar 

  12. Malyarenko, A., Ostoja-Starzewski, M.: Tensor-Valued Random Fields for Continuum Physics. Cambridge University Press, UK (2019). https://doi.org/10.1017/9781108555401

    Book  MATH  Google Scholar 

  13. Malyarenko, A., Ostoja-Starzewski, M.: Tensor- and spinor-valued random fields with applications to continuum physics and cosmology. Probab. Surv. 20, 1–86 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malyarenko, A., Ostoja-Starzewski, M.: Polyadic random fields. ZAMP 73, 204 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46(2), 269–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14(4), 1134–1149 (2008). https://doi.org/10.3150/08-BEJ139

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Malyarenko, A., Porcu, E., Ostoja-Starzewski, M.: Elastodynamic problem on tensor random fields with fractal and Hurst effects. Meccanica 57(4), 957–970 (2022). https://doi.org/10.1007/s11012-021-01424-1

    Article  MathSciNet  Google Scholar 

  18. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942). https://doi.org/10.1215/S0012-7094-42-00908-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Daley, D.J., Porcu, E.: Dimension walks and Schoenberg spectral measures. Proc. Am. Math. Soc. 142(5), 1813–1824 (2014). https://doi.org/10.1090/S0002-9939-2014-11894-6

    Article  MathSciNet  MATH  Google Scholar 

  20. P’olya, G.: Remarks on characteristic functions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 115–123 (1949). https://www.jstor.org/stable/2235784

  21. Berg, C.: Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity. In: Positive Definite Functions: From Schoenberg to Space-Time Challenges, pp. 15–45 (2008)

  22. Schilling, R.L., Song, R., Vondracek, Z.: Bernstein functions. In: Bernstein functions, de Gruyter, Berlin (2012) https://doi.org/10.1515/9783110269338

  23. Gneiting, T.: Criteria of P’olya type for radial positive definite functions. Proc. Am. Math. Soc. 129(8), 2309–2318 (2001). https://doi.org/10.1090/S0002-9939-01-05839-7

    Article  MATH  Google Scholar 

  24. Porcu, E., Mateu, J., Zini, A., Pini, R.: Modelling spatio-temporal data: a new variogram and covariance structure proposal. Stat. Probab. Lett. 77(1), 83–89 (2007). https://doi.org/10.1016/j.spl.2006.05.013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaswanth Sai Jetti.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Some background is necessary for a self-contained exposition. A function \(f:[0,\infty ) \rightarrow {\mathbb {R}}\) is called a Bernstein function [21] if its first derivative is completely monotonic.

Proof of Proposition 3.1:

According to the Schoenberg theorem [18], a candidate mapping \(\varphi : [0,\infty ) \rightarrow {\mathbb {R}}\) belongs to the class \(\varPhi _{\infty }\) if and only if the mapping \(0 \le x \mapsto \varphi (x)\) is completely monotonic. Hence, our assertion is proved by a direct inspection that allows to check for complete monotonicity. To provide a proof based on direct construction, we define

$$\begin{aligned} \varphi _{\alpha }(x):= \frac{(1+x)^{\alpha -1}}{(1+x)^{\alpha }-x^{\alpha }}, \qquad x \ge 0, \end{aligned}$$

and

$$\begin{aligned} \theta _{\beta }(x):= \frac{1}{(1+x)^{\beta }}, \qquad x \ge 0. \end{aligned}$$

Direct inspection shows that the function \(\psi _{\alpha ,\beta }(\cdot )\) can be expressed as follows:

$$\begin{aligned} \psi _{\alpha ,\beta }(x)&= (1-(1+x^{-1})^{-\alpha })^{\beta }\\&= \left( \frac{(1+x)^{\alpha }-x^{\alpha }}{(1+x)^{\alpha -1}}\right) ^\beta \frac{1}{(1+x)^\beta }\\&= \varphi _{\alpha }^{-\beta }(x)\theta _{\beta }(x), \qquad x \ge 0. \end{aligned}$$

We now invoke the fact that completely monotone functions are a convex cone that is closed under pointwise convergence [21]. Hence, the product of two completely monotone functions is still completely monotonic. We now observe that the function \(\theta _{\beta }(\cdot )\) is completely monotonic for \(\beta \ge 0\). Hence, we need prove that \(\varphi _{\alpha }^{-\beta }(\cdot )\) is completely monotonic, implying that \(\psi _{\alpha ,\beta }(x)\) is completely monotonic as well.

For a completely monotonic function, g and a Bernstein function, f, the composition \(g\circ f\) is a completely monotonic function [21]. Direct inspection shows that the function \(g(z):=z^{-\beta }\) is completely monotonic for \(\beta \ge 0\). We now show that \(\varphi _{\alpha }(\cdot )\) is a Bernstein function, and this fact will complete the proof.

Consider the following function:

$$\begin{aligned} \rho _{\alpha } (x) = \frac{x^{\alpha }-x(1+x)^{\alpha -1}}{(1+x)^\alpha -x^\alpha }, \qquad x \ge 0. \end{aligned}$$

For \(0<\alpha <1\), \(\rho _{\alpha }(x)\) is a complete Bernstein function ([22], p. 220). Now, consider the following expression:

$$\begin{aligned} 1+\rho _{\alpha }(x)&= \frac{x^{\alpha }-x(1+x)^{\alpha -1}}{(1+x)^\alpha -x^\alpha } + 1\\&= \frac{(1+x)^{\alpha -1}}{(1+x)^{\alpha }-x^{\alpha }}\\&= \varphi _{\alpha } (x), \qquad x \ge 0. \end{aligned}$$

Here, \(\varphi _{\alpha } (x) = 1+\rho _{\alpha }(x) > 0\) is a Bernstein function for \(0<\alpha <1\) as \(\rho _{\alpha }(x)\) is a Bernstein function for \(0<\alpha <1\). It can be easily verified that \(\psi _{1,\beta }(x)=\theta _{\beta }(x)\) and therefore \(\psi _{\alpha ,\beta }\) is completely monotonic for the case \(\alpha =1\) as well. \(\square \)

Proof of Positive definiteness of \(\psi _{\alpha ,\beta }\) in \({\mathbb {R}}^3\) The sufficient conditions for the positive definiteness can be obtained by applying Pólya theorem [20] for radial functions and the corresponding extension to \({\mathbb {R}}^n\) as given in [23]. Define the following function:

$$\begin{aligned} \eta _1(x) = \left( -\frac{d}{du}\right) ^k \psi (u^{1/2})\vert _{u=x^2}, \end{aligned}$$

for \(x>0\) and k a nonnegative integer. From Gneiting’s theorem, if there exists \(m \ge \frac{1}{2}\) such that

$$\begin{aligned} \eta _2(x) = \left( -\frac{d}{dx}\right) ^{k+l-1} [-\eta _1^{\prime }(x^m)] \end{aligned}$$

is convex for \(x>0\) and l a nonnegative integer, then \(\psi \) is positive definite on \({\mathbb {R}}^n\). The above-mentioned arguments are taken from [24]. By setting \(k=0\), \(l=1\), and \(m=1\), if we can show that

$$\begin{aligned} -\eta ^{\prime }_1(x) = -\psi _{\alpha ,\beta }^{\prime }(x) = \alpha \beta (1-(1+x^{-1})^{-\alpha })^{\beta -1}(1+x^{-1})^{-\alpha -1}x^{-2}=: f_{\alpha ,\beta }(x) \end{aligned}$$
(A.1)

is convex, then (3.1) is valid on \({\mathbb {R}}^3\). To show this, we take the second derivative of Eq. (A.1), which has the following expression:

$$\begin{aligned} f_{\alpha ,\beta }^{\prime \prime }(x) =f_{\alpha ,\beta }(x)(1+x^{-1})^{\alpha }\frac{P(x,\alpha ,\beta )+(1+x^{-1})^{\alpha } Q(x,\alpha ,\beta )+(1+x^{-1})^{-\alpha }R(x,\alpha ,\beta )}{x^2((1+x^{-1})^\alpha - 1)^2(x + 1)^2} \end{aligned}$$

Here,

$$\begin{aligned} P(x,\alpha ,\beta )&:= \alpha ^2 + 3\alpha - 4 + 3\alpha \beta (1-\alpha ) + (6\alpha (1+\beta )-12)x - 12x^2\\ Q(x,\alpha ,\beta )&:= \alpha ^2 - 3\alpha + 2 + (1-\alpha )6r + 6r^2\\ R(x,\alpha ,\beta )&:= \alpha ^2\beta ^2 - 3\alpha \beta + 2 + (1-\alpha \beta )6x + 6x^2 \end{aligned}$$

\(f_{\alpha ,\beta }^{\prime \prime }(x)\) has to be positive for \(f_{\alpha ,\beta }(x)\) to be convex. It can be easily shown that \(f_{\alpha ,\beta }(x)\) is positive when \(\alpha >0\) and \(\beta >0\). For \(f_{\alpha ,\beta }^{\prime \prime }(x)\) to be positive, the expression,

$$\begin{aligned} S(x,\alpha ,\beta ):=P(x,\alpha ,\beta )+(1+x^{-1})^{\alpha }Q(x,\alpha ,\beta )+(1+x^{-1})^{-\alpha }R(x,\alpha ,\beta ) \end{aligned}$$

has to be positive when \(\alpha >0\) and \(\beta >0\).

The expression \(Q(x,\alpha ,\beta )\) is quadratic in x with a positive coefficient of \(x^2\). \(Q(x,\alpha ,\beta )\) is always positive if its discriminant is negative.

$$\begin{aligned} \Delta _Q&= (6(1-\alpha ))^2-4(6)(\alpha ^2 - 3\alpha + 2)\\&= 12(\alpha ^2-1)\\&<0 \quad \text {for } \alpha <1 \end{aligned}$$

Similarly, the expression \(R(x,\alpha ,\beta )\) is quadratic in x with a positive coefficient of \(x^2\). \(R(x,\alpha ,\beta )\) is always positive if its discriminant is negative.

$$\begin{aligned} \Delta _R&= (6(1-\alpha \beta ))^2-4(6)(\alpha ^2\beta ^2 - 3\alpha \beta + 2)\\&= 12(\alpha ^2\beta ^2-1)\\&<0 \quad \text {for } \alpha \beta <1 \end{aligned}$$

The expression \(P(x,\alpha ,\beta )\) as well is quadratic in x, however, with a negative coefficient of \(x^2\). So, \(P(x,\alpha ,\beta )\) can either be completely negative or mostly negative.

Consider \(S(x,\alpha ,\beta )\) when \(0<\alpha <1\) and \(0<\alpha \beta <1\) as \(x\rightarrow 0\) and as \(x\rightarrow \infty \)

$$\begin{aligned} \lim _{x\rightarrow 0}S(x,\alpha ,\beta )&= \infty >0 \end{aligned}$$
$$\begin{aligned} \lim _{x\rightarrow \infty }S(x,\alpha ,\beta )&= \alpha ^2(\beta -1)(\beta -2)\\&>0 \quad \text {for }\beta <1 \end{aligned}$$

Therefore, consider \(S(x,\alpha ,\beta )\) when \(0<\alpha <1\) and \(0<\beta <1\):

$$\begin{aligned} S(x,\alpha ,\beta )&=P(x,\alpha ,\beta )+(1+x^{-1})^{\alpha }Q(x,\alpha ,\beta )+(1+x^{-1})^{-\alpha }R(x,\alpha ,\beta )\\&\ge P(x,\alpha ,\beta )+2\sqrt{Q(x,\alpha ,\beta )R(x,\alpha ,\beta )}=:T(x,\alpha ,\beta ) \end{aligned}$$

The expression \(T(x,\alpha ,\beta )\) is much simpler compared to \(S(x,\alpha ,\beta )\). It is minimized using Wolfram Mathematica with the constrains \(\{0<\alpha<1; 0<\beta <1\}\).

$$\begin{aligned} \text {min } T(x,\alpha ,\beta )&= \alpha ^2-1+\sqrt{(\alpha ^2-1)(\alpha ^2\beta ^2-1)}\\&> 0 \end{aligned}$$
$$\begin{aligned} \implies S(x,\alpha ,\beta )\ge T(x,\alpha ,\beta ) >0 \end{aligned}$$

\(\square \)

Proof of Proposition 3.2:

Consider the following volume integral for the case \(n=3\) over \(V\in {\mathbb {R}}^3\) to check \(L^1-\) integrability,

$$\begin{aligned} \iiint _V \psi _{\alpha ,\beta }({\Vert {\textbf{x}}\Vert }) \,d{\textbf{x}}&= \int \limits _{0}^{2\pi }\int \limits _{0}^{\pi }\int \limits _{0}^{R}\vert (1-(1+x^{-1})^{-\alpha })^{\beta }\vert x^2\sin {(\theta )} \,dx\,d\theta \,d\varPhi \\&= \int \limits _{0}^{2\pi }\int \limits _{0}^{\pi }\int \limits _{0}^{R}\frac{((1+x^{-1})^{\alpha }-1)^{\beta }}{(1+x^{-1})^{\alpha \beta }} x^2\sin {(\theta )} \,dx\,d\theta \,d\varPhi \\&= 4\pi \int \limits _{0}^{R}\frac{((1+x^{-1})^{\alpha }-1)^{\beta }}{(1+x^{-1})^{\alpha \beta }} x^2 \,dx. \end{aligned}$$

For \(R\le 1\)

$$\begin{aligned} \iiint _V \psi _{\alpha ,\beta }(\Vert {\textbf{x}}\Vert ) \,d{\textbf{x}}&\le 4\pi \int \limits _{0}^{R} x^2 \,dx\\&=4\pi \frac{R^3}{3}\\&\le 4\pi /3\\&< \infty . \end{aligned}$$

For \(R> 1\),

$$\begin{aligned} \iiint _V \psi _{\alpha ,\beta }({\Vert {\textbf{x}}\Vert }) \,d{\textbf{x}}&\le \frac{4\pi }{3}+4\pi \int \limits _{1}^{R}((1+x^{-1})^{\alpha }-1)^{\beta } x^2 \,dx\\&\le \frac{4\pi }{3}+4\pi \int \limits _{1}^{R}((1+\alpha x^{-1})-1)^{\beta } x^2 \,dx\\&\le \frac{4\pi }{3}+4\pi \int \limits _{1}^{R}\alpha ^{\beta } x^{-\beta +2} \,dx\\&=\frac{4\pi }{3} + 4\pi \frac{\alpha ^{\beta }}{-\beta +3}(R^{-\beta +3}-1)\\&< \infty \quad \text {for } \beta >3. \end{aligned}$$

By similar computations, it can be shown that \(\psi _{\alpha ,\beta }(x)\) is \(L^1-\) and \(L^2-\) integrable, respectively, under the conditions \(\beta > n\) and \(\beta >n/2\) for \(n=1,2,3\). \(\square \)

Proof of Proposition 3.3:

To estimate the fractal dimension for \(\psi _{\alpha ,\beta }\), consider the following:

$$\begin{aligned} \lim _{x\rightarrow 0}\frac{1-\psi _{\alpha ,\beta }(x)}{x^{\delta }}&= \lim _{x\rightarrow 0}\frac{1-(1-(1+x^{-1})^{-\alpha })^{\beta }}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{1-(1-x^{\alpha }(1+x)^{-\alpha })^{\beta }}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{1-(1-\beta x^{\alpha }(1+x)^{-\alpha })}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{\beta x^{\alpha }}{x^{\delta }}\lim _{x\rightarrow 0}(1+x)^{-\alpha }\\&= \lim _{x\rightarrow 0}\frac{\beta x^{\alpha }}{x^{\delta }}. \end{aligned}$$

Setting \(\delta = \alpha \) implies

$$\begin{aligned} \lim _{x\rightarrow 0}\frac{1-\psi _{\alpha ,\beta }(x)}{x^{\delta }}&= \beta > 0. \end{aligned}$$

Therefore, the fractal dimension is identically equal to \(D = n+1-\alpha /2\). To estimate the Hurst parameter for the above covariance function, consider the following:

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{\psi _{\alpha ,\beta }(x)}{x^{-\omega }}&= \lim _{x\rightarrow \infty }\frac{((1+x^{-1})^{\alpha }-1)^{\beta }}{(1+x^{-1})^{\alpha \beta }x^{-\omega }}\\&= \lim _{x\rightarrow \infty }\frac{((1+\alpha x^{-1})-1)^{\beta }}{x^{-\omega }}\\&= \lim _{x\rightarrow \infty }\frac{\alpha ^{\beta } x^{-\beta }}{x^{-\omega }}. \end{aligned}$$

Consider \(\omega = \beta \), this implies that

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{\psi _{\alpha ,\beta }(x)}{x^{-\omega }}&= \alpha ^{\beta } > 0 \end{aligned}$$

Therefore, the Hurst parameter is \(H = 1-\beta /2\). \(\square \)

Proof of Proposition 3.6:

To obtain the fractal dimension for the MOSP model corresponding to \(\psi _{\alpha ,\beta ,\gamma }\) as in Eq. (3.2), consider the following

$$\begin{aligned} \lim _{x\rightarrow 0}\frac{1-{\tilde{\psi }}_{\alpha _1,\beta _1,\gamma _1,\alpha _2,\beta _2,\gamma _2}(x)}{x^{\delta }}&= \lim _{x\rightarrow 0}\frac{1-(1-(1+x^{-\gamma _1})^{-\alpha _1})^{\beta _1}(1-(1+x^{-\gamma _2})^{-\alpha _2})^{\beta _2}}{x^{\delta }} \\&= \lim _{x\rightarrow 0}\frac{1-(1-{\beta _1}(1+x^{-\gamma _1})^{-\alpha _1})(1-{\beta _2}(1+x^{-\gamma _2})^{-\alpha _2})}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{1-(1-{\beta _1}(1+x^{-\gamma _1})^{-\alpha _1}-{\beta _2}(1+x^{-\gamma _2})^{-\alpha _2})}{x^{\delta }}\\&-\frac{{\beta _1}{\beta _2}(1+x^{-\gamma _1})^{-\alpha _1}(1+x^{-\gamma _2})^{-\alpha _2}}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{{\beta _1}x^{\gamma _1\alpha _1}(1+x^{\gamma _1})^{-\alpha _1} +{\beta _2}x^{\gamma _2\alpha _2}(1+x^{\gamma _2})^{-\alpha _2}}{x^{\delta }}\\&-\frac{{\beta _1}{\beta _2}x^{\gamma _1\alpha _1+\gamma _2\alpha _2} (1+x^{\gamma _1})^{-\alpha _1}(1+x^{\gamma _2})^{-\alpha _2}}{x^{\delta }}\\&= \lim _{x\rightarrow 0}\frac{{\beta _1}x^{\gamma _1\alpha _1}+{\beta _2}x^{\gamma _2\alpha _2}+ {\beta _1}{\beta _2}x^{\gamma _1\alpha _1+\gamma _2\alpha _2}}{x^{\delta }}. \end{aligned}$$

Setting \(\delta = \gamma _1\alpha _1 \le \gamma _2\alpha _2\) implies

$$\begin{aligned} \lim _{x\rightarrow 0}\frac{1-{\tilde{\psi }}_{\alpha _1,\beta _1,\gamma _1,\alpha _2,\beta _2,\gamma _2}(x )}{x^{\delta }}&= {\left\{ \begin{array}{ll} \beta _1, \qquad \gamma _1\alpha _1<\gamma _2\alpha _2\\ \beta _1+\beta _2, \qquad \gamma _1\alpha _1=\gamma _2\alpha _2. \end{array}\right. } \end{aligned}$$

Therefore, the fractal dimension is identically equal to \(D=n+1-\text {min}(\gamma _1\alpha _1,\gamma _2\alpha _2)/2\). To obtain the Hurst parameter, consider the following:

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{{\tilde{\psi }}_{\alpha _1,\beta _1,\gamma _1,\alpha _2,\beta _2,\gamma _2}(x)}{x^{-\omega }}&= \lim _{x\rightarrow \infty } \frac{(1-(1+x^{-\gamma _1})^{-\alpha _1})^{\beta _1} (1-(1+x^{-\gamma _2})^{-\alpha _2})^{\beta _2}}{x^{-\omega }} \\&= \lim _{x\rightarrow \infty } \frac{(1-(1+x^{-\gamma _1})^{-\alpha _1})^{\beta _1}}{x^{-\omega _1}} \lim _{x\rightarrow \infty } \frac{(1-(1+x^{-\gamma _2})^{-\alpha _2})^{\beta _2}}{x^{-\omega _2}}\\&= \lim _{x\rightarrow \infty } \frac{((1+x^{-\gamma _1})^{\alpha _1}-1)^{\beta _1}}{(1+x^{-\gamma _1})^{\alpha _1}x^{-\omega _1}} \lim _{x\rightarrow \infty } \frac{((1+x^{-\gamma _2})^{\alpha _2}-1)^{\beta _2}}{(1+x^{-\gamma _2})^{\alpha _2}x^{-\omega _2}}\\&= \lim _{x\rightarrow \infty } \frac{((1+\alpha _1x^{-\gamma _1})-1)^{\beta _1}}{x^{-\omega _1}} \lim _{x\rightarrow \infty } \frac{((1+\alpha _2x^{-\gamma _2})-1)^{\beta _2}}{x^{-\omega _2}}\\&= \lim _{x\rightarrow \infty } \frac{\alpha _1^{\beta _1}x^{-\gamma _1\beta _1}}{x^{-\omega _1}} \lim _{x\rightarrow \infty } \frac{\alpha _2^{\beta _2}x^{-\gamma _2\beta _2}}{x^{-\omega _2}} \end{aligned}$$

Considering \(\omega _1 = \gamma _1\beta _1\) and \(\omega _2 = \gamma _2\beta _2\), we get

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{{\tilde{\psi }}_{\alpha _1,\beta _1,\gamma _1,\alpha _2,\beta _2,\gamma _2}(x)}{x^{-\omega }}&= \alpha _1^{\beta _1} \alpha _2^{\beta _2}>0 \end{aligned}$$

Therefore, the Hurst parameter is \(H = 1 - (\gamma _1\beta _1 + \gamma _2\beta _2)/2\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jetti, Y.S., Porcu, E. & Ostoja-Starzewski, M. New decouplers of fractal dimension and Hurst effects. Z. Angew. Math. Phys. 74, 123 (2023). https://doi.org/10.1007/s00033-023-02010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02010-z

Keywords

Mathematics Subject Classification

Navigation