Skip to main content
Log in

Properties of traveling waves in an impulsive reaction–diffusion model with overcompensation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The phenomenon of overcompensation is widespread in ecology, and non-monotonic discrete-time map may admit complex dynamics. This paper focuses on the impact of overcompensation on the propagation of a spatially moving population with a birth pulse. We prove the upward convergence of the oscillating traveling wave when the birth function is a unimodal function. We establish the existence of monotone and non-monotone traveling wave solutions for the second iterative operator. Furthermore, we obtain the existence, uniqueness, and stability of the standing wave solutions for the second iterative operator. Numerical simulations are performed to illustrate and complement the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bai, Z., Lou, Y., Zhao, X.-Q.: Spatial dynamics of species with annually synchronized emergence of adults. J. Nonlinear Sci. 32(6), 78 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgeois, A., Leblanc, V., Lutscher, F.: Spreading phenomena in integrodifference equations with nonmonotone growth functions. SIAM J. Appl. Math. 78(6), 2950–2972 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgeois, A., Leblanc, V., Lutscher, F.: Dynamical stabilization and traveling waves in integrodifference equations. Discrete Contin. Dyn. Syst. Ser. S 13(11), 3029–3045 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Ding, W., Matano, H.: Dynamics of time-periodic reaction–diffusion equations with front-like initial data on \({\mathbb{R} }\). SIAM J. Math. Anal. 52(3), 2411–2462 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, J., Pan, Y.: Nonmonotonicity of traveling wave profiles for a unimodal recursive system. SIAM J. Math. Anal. 54, 1669–1694 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fazly, M., Lewis, M.A., Wang, H.: On impulsive reaction–diffusion models in higher dimensions. SIAM J. Appl. Math. 77(1), 224–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fazly, M., Lewis, M.A., Wang, H.: Analysis of propagation for impulsive reaction–diffusion models. SIAM J. Appl. Math. 80(1), 521–542 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giletti, T., Matano, H.: Existence and uniqueness of propagating terraces. Commun. Contemp. Math. 22(6), 1950055 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsu, S.-B., Zhao, X.-Q.: Spreading speed and traveling waves for non-monotone integro-difference equations. SIAM J. Math. Anal. 40(2), 776–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kot, M.: Discrete-time traveling waves-ecological examples. J. Math. Biol. 30, 413–436 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lewis, M.A., Li, B.: Spreading speed, traveling waves, and minimal domain size in impulsive reaction–diffusion models. Bull. Math. Biol. 74(10), 2383–2402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Lewis, M.A., Weinberger, H.F.: Existence of traveling waves for integral recursions with nonmonotone growth functions. J. Math. Biol. 58(3), 323–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, J., Yan, Q., Xiang, C., Tang, S.: A reaction–diffusion population growth equation with multiple pulse perturbations. Commun. Nonlinear Sci. Numer. Simul. 74, 122–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and travelling waves for monotone semiflow with applications, Commun. Pure Appl. Math. 60, 1–40 (2007). Erratum: 61, 137–138 (2008)

  17. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259(4), 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Y., Wang, Q.R.: Spreading speed and traveling wave solutions in impulsive reaction–diffusion models. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 185–191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lui, R.: A nonlinear integral operator arising from a model in population genetics, I. Monotone initial data. SIAM J. Math. Anal. 13(8), 913–937 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974)

    Article  Google Scholar 

  21. Meng, Y., Ge, J., Lin, Z.: Dynamics of a free boundary problem modelling species invasion with impulsive harvesting. Discrete Contin. Dyn. Syst. Ser. B 27(12), 7689–7720 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meng, Y., Lin, Z., Pedersen, M.: Effects of impulsive harvesting and an evolving domain in a diffusive logistic model. Nonlinearity 34(10), 7005 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shang, J., Li, B., Barnard, M.R.: Bifurcations in a discrete time model composed of Beverton–Holt function and Ricker function. Math. Biosci. 263, 161–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vasilyeva, O., Lutscher, F., Lewis, M.A.: Analysis of spread and persistence for stream insects with winged adult stages. J. Math. Biol. 72(4), 851–875 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, M., Zhang, Y., Huang, Q.: A stage-structured continuous-/discrete-time population model: persistence and spatial spread. Bull. Math. Biol. 84, 135 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., Salmaniw, Y., Wang, H.: Persistence and propagation of a discrete-time map and PDE hybrid model with strong Allee effect. Nonlinear Anal. RWA 61, 103336 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z., Wang, H.: Persistence and propagation of a PDE and discrete-time map hybrid animal movement model with habitat shift driven by climate change. SIAM J. Appl. Math. 80, 2608–2630 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Z., Wang, H.: Bistable traveling waves in impulsive reaction–advection–diffusion models. J. Differ. Equ. 285, 17–39 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, R., Zhao, X.-Q.: Spatial invasion of a birth pulse population with nonlocal dispersal. SIAM J. Appl. Math. 79(3), 1075–1097 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, R., Zhao, X.-Q.: The evolution dynamics of an impulsive hybrid population model with spatial heterogeneity. Commun. Nonlinear Sci. Numer. Simul. 107, 106181 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, H., Lin, Z., Santos, C.: Persistence, extinction and blowup in a generalized logistic model with impulses and regional evolution. J. Appl. Anal. Comput. 12(5), 1922–1944 (2022)

    MathSciNet  Google Scholar 

  33. Yi, T., Chen, Y., Wu, J.: Unimodal dynamical systems: comparison principles, spreading speeds and travelling waves. J. Differ. Equ. 254, 3376–3388 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, Z., Yuan, R.: Properties of traveling waves for integrodifference equations with nonmonotone growth functions. Z. Angew. Math. Phys. 63(2), 249–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y., Zhao, X.-Q.: Uniqueness and stability of bistable waves for monotone semiflows. Proc. Am. Math. Soc. 149, 4287–4302 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Z Wang’s research was partially supported by the Project funded by China Postdoctoral Science Foundation (No. 2022M723058) and Fundamental Research Funds for the Central Universities. Q An’s research was partially supported by Natural Science Found of Jiangsu province BK20200805 and Natural Science Fund Project of Colleges in Jiangsu Province 20KJB110009. H Wang’s research was partially supported by NSERC Discovery Grant RGPIN-2020-03911 and NSERC Accelerator Grant RGPAS-2020-00090. The authors are very grateful to the anonymous referee for careful reading and many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., An, Q. & Wang, H. Properties of traveling waves in an impulsive reaction–diffusion model with overcompensation. Z. Angew. Math. Phys. 74, 114 (2023). https://doi.org/10.1007/s00033-023-02004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02004-x

Keywords

Mathematics Subject Classification

Navigation