Skip to main content
Log in

Friction factor power law with equivalent log law, of a turbulent fully developed flow, in a fully smooth pipe

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Over the past century, Blasius (Forschungsheft 131:1–41, 1913) gave empirical power law friction factors \(\lambda = 0.3164\;\text {Re}^{-1/4}\) for a turbulent pipe flow and later work published other empirical values of power law indexes. The present work deals with open Reynolds momentum equations by matched asymptotic expansions for large Reynolds number. In the overlap region, a rational dual solutions have power law and log law velocities and friction factor. If outer layer flow is neglected, the power-law friction factor becomes \(\lambda = m \text {Re}^{-n}\) in a pipe flow, with power law index \(n(\text {Re})\) and prefactor \(m(\text {Re})\). Further, tangent at a point on power law envelop gives log law at that point. Thus for each value of power index n with prefactor m, the power law theory holds at a point. As an engineering practice, power law at one point is often used in a limited domain of Reynolds number, which compares in that range with experimental and DNS data reported in the literature. The friction factor log law to higher order has been proposed and the second-order effect compares well for lower Reynolds numbers in an entire range of Reynolds numbers for a turbulent pipe flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Steen, P., Brutsaert, W.: Saph and Schoder and the friction law of Blasius. Annu. Rev. Fluid Mech. 49, 575–582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blasius, P.R.H.: Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flssigkeiten. Forschungsheft 131, 1–41 (1913)

    Google Scholar 

  3. Saph, A.V., Schoder, E.H.: An experimental study of the resistances to the flow of water in pipes. Trans. Am. Soc. Civ. Eng. 51, 253–312 (1903)

    Article  Google Scholar 

  4. Prandtl, L.: The mechanics of viscous fluid. In: Durand, W.F. (ed.) Aerodynamic Theory, vol. 3, pp. 34–208. Springer, New York (1935)

    Chapter  Google Scholar 

  5. Eckert, M.: Pipe flow: a gateway to turbulence. Arch. Hist. Exact Sci. 75, 249–282 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Prandtl, L.: Sie fragen nach der theoretischen Ableitung des Blasiusæschen Widerstandsgesetzes für Rohre. Wer der wird dadurch ein berühmter Mann! Prandtl to Birnbaum, 7 June 1923, MPGA, Abt. III, Rep. 61, Nr. 137) (Refer Page 271 & footnote 37 in Eckert 2021) (1923)

  7. Cipra, B.: A new theory of turbulence causes a stir among experts. Science 272(5264), 951 (1996)

    Article  Google Scholar 

  8. Egolf, P.W., Hutter, K.: Nonlinear, Nonlocal and Fractional Turbulence, pp. 65–67. Springer, New York (2020)

    Book  MATH  Google Scholar 

  9. Afzal, N.: Power law and log law velocity profiles in fully developed turbulent pipe flow: equivalent relations at large Reynolds numbers. Acta Mech. 151, 171–183 (2001)

    Article  MATH  Google Scholar 

  10. Izakson, A.A.: On Formula for the velocity distribution near walls. Tech. Phys. USSR 4, 155–159 (1937)

    Google Scholar 

  11. Millikan, C.B.: A critical discussion of turbulent flow in channels and circular tubes. In: Proceedings of the Fifth International Congress for Applied Mechanics, pp. 386–392 (1939)

  12. Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1(2), 8191–226 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  13. Afzal, N.: Millikan overlap argument for moderately large Reynolds numbers. Phys. Fluids 19, 600–602 (1976)

    Article  Google Scholar 

  14. Afzal, N.: Friction factor directly from transitional rough pipes. ASME J. Fluid Eng. 129(10), pp. 1255–1267. Erratum ASME J. Fluid Eng. 133, 107001-1 (2011)

  15. Afzal, N., Bush, W.B.: A three layer asymptotic analysis of turbulent channel flows. Indian Acad. Sci. Ser. A 94, 135–148 (1985)

    Article  MATH  Google Scholar 

  16. Buschmann, M.H., Gad-el-Hak, M.: Generalized logarithmic law and its consequences. AIAA J. 41, 40–48 (2003)

    Article  Google Scholar 

  17. Buschmann, M.H., Gad-el-Hak, M.: Scaling of the mean-velocity profiles of the canonical turbulent wall-bounded flow. Prog. Aerosp. Sci. 42, 419–467 (2007)

    Article  Google Scholar 

  18. Nikuradse, J.: Gesetzmaigkeit der turbulenten Stromungen in glatten Rohren, VDI-Forsch.-Heft 356. VDI-Verl, Berlin (1932)

  19. Duncan, D.J., Thom, A.S., Young, D.: Mechanics of Fluids (Paperback). ELBS, London (1970)

    Google Scholar 

  20. Knudsen, J.G., Katz, D.L.: Fluid Dynamics and Heat Transfer. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  21. Fang, X., Xu, Y., Zhou, Z.: New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nucl. Eng. Des. 241, 897–902 (2011)

    Article  Google Scholar 

  22. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)

    Article  MATH  Google Scholar 

  23. Brkic, D., Praks, P.: Unified friction formulation from laminar to fully rough turbulent flow. Appl. Sci. 8(11), 2036 (2018)

    Article  Google Scholar 

  24. Buschmann, M.H., Gad-el-Hak, M.: Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA J. 41, 565–572 (2003)

    Article  Google Scholar 

  25. Patel, V.C., Head, M.R.: Some observations on skin friction and velocity profile in fully developed pipe and channel flow. J. Fluid Mech. 38, 181–201 (1969)

    Article  Google Scholar 

  26. Zanoun, E.M.: Answers to Some Open Questions in Wall-Bounded Laminar and Turbulent Shear Flows. Ph.D. thesis, Technischen Fakultat der Universitat Erlangen-Nurnberg, Germany (2003)

  27. McKeon, B.J., Swanson, C.J., Zaragola, M.V., Donnelly, R.J., Smits, A.J.: Friction factors for smooth pipe flow. J. Fluid Mech. 511, 41–44 (2004)

    Article  MATH  Google Scholar 

  28. Furuichi, N., Terao, Y., Wada, Y., Tsuji, Y.: Friction factor and mean velocity profile for pipe flow at high Reynolds numbers. Phys. Fluids 27, 095108 (2015)

    Article  Google Scholar 

  29. Boersma, B.J.: Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000. J. Phys. 318, 042045 (2011)

    Google Scholar 

  30. Khoury, G.K.E., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91, 475–495 (2013)

    Article  Google Scholar 

  31. Feldmann, D., Bauer, C., Claus Wagner, C.: Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow. J. Turbul. 19, 274–295 (2018)

    Article  MathSciNet  Google Scholar 

  32. Gul, M.: Experimental investigation of turbulence in canonical wall bounded flows Pipe flow and Taylor–Couette flow. Ph.D. thesis, Delft University of Technology Delft, The Netherlands (2019)

  33. Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R., Orlandi, P.: One-point statistics for turbulent pipe flow up to \(Re_\tau = \ddot{y}6000\). J. Fluid Mech. 926, A1–A28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cantwell, B.J.: A universal velocity profile for smooth wall pipe flow. J. Fluid Mech. 878, 834–874 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luchini, P.: Universality of the turbulent velocity profile. Phys. Rev. Lett. 118, 224501 (2017)

    Article  Google Scholar 

  36. Afzal, N., Yajnik, K.S.: Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech. 61, 23–31 (1973)

    Article  Google Scholar 

  37. Anbarlooei, H., Cruz, D., Ramos, F.: New power-law scaling for friction factor of extreme Reynolds number pipe flows. Phys. Fluids 32, 095121(1–2) (2020)

    Article  Google Scholar 

  38. Swanson, J., Julian, B., Ihas, G.G., Donnelly, R.J.: Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases. J. Fluid Mech. 461, 51–60 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Afzal.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Reynolds mean momentum equation for turbulent flow in a pipe

Appendix 1: Reynolds mean momentum equation for turbulent flow in a pipe

The mean momentum equation for an steady turbulent pipe flow, in cylindrical coordinates \((r, \theta , x)\) in streamwise x-direction, can be described as:

$$\begin{aligned} 0 = - \frac{{d}p}{\rho {d}x} + \frac{1}{r} \frac{\partial }{\partial r}\left[ r \left( \nu \frac{\partial U_x}{\partial r} - <u'_x u'_r>\right) \right] \end{aligned}$$
(A1)

Here \(U_x\) is the axial mean velocity in pipe, p is the static pressure distribution, \(\delta \) is the radius of pipe, \(\nu = \mu /\rho \) is the kinematic viscosity of fluid, \(\rho \) is the fluid density, \(u_\tau = (\tau _w/\rho )\) is the friction velocity and \(\tau _w\) is the shear stress on the wall. The first term on the right-hand side is the pressure gradient dp/dx, the second term represents the viscous force \(\mu dU_x/dr\) and the third term represents turbulent Reynolds shear stress \(- \rho <u'_x u'_r>\) as inertia term. The integration on mean momentum equation (A1) over pipe cross section gives a balance of pressure gradient and wall shear stress as

$$\begin{aligned} \frac{{d}p}{\rho {d}x} = - \frac{2}{\delta } \frac{\tau _w}{\rho } \end{aligned}$$
(A2)

Thus, the mean momentum equation (A1) with balance equation (A2) becomes

$$\begin{aligned} \nu \frac{\partial U_x}{\partial r} - <u'_x u'_r> = - \frac{r}{\delta } \frac{\tau _w}{ \rho } \end{aligned}$$
(A3)

Introducing the coordinate normal from pipe wall \(y=\delta - r\), then \(du/dr = - du/dy\), \(u_r = - u_y\) and \(U_x=u\), the mean momentum equation (A1) becomes

$$\begin{aligned} \nu \frac{\partial u}{\partial y} + \tau = u_\tau ^2 \; \left( 1 - \frac{y}{\delta } \right) \end{aligned}$$
(A4)

where \(\tau = - <u'_x u'_y> \) is the Reynolds shear stress. The boundary conditions on pipe wall \(y=0\) and centerline \(y=\delta \) become

$$\begin{aligned} y = 0, \quad u = \tau =0; \quad y = \delta , \quad u - U_c = \tau = 0 \end{aligned}$$
(A5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, N., Seena, A. & Bushra, A. Friction factor power law with equivalent log law, of a turbulent fully developed flow, in a fully smooth pipe. Z. Angew. Math. Phys. 74, 144 (2023). https://doi.org/10.1007/s00033-023-01997-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01997-9

Keywords

Mathematics Subject Classification

Navigation