Skip to main content
Log in

Hopf bifurcation analysis in a diffusive predator–prey system with spatial heterogeneity and delays

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a diffusive Lotka–Volterra predator–prey system with spatial heterogeneity and two delays. We first show that there exists a nonconstant positive steady state when the diffusion rates of prey and predator are large. Then, we obtain the stability of the steady state and show the existence of a Hopf bifurcation. Moreover, some numerical simulations are provided to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. An, Q., Wang, C., Wang, H.: Analysis of a spatial memory model with nonlocal maturation delay and hostile boundary condition. Discrete Contin. Dyn. Syst. 40(10), 5845–5868 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blat, J., Brown, K.J.: Bifurcation of steady-state solutions in predator–prey and competition systems. Proc. Roy. Soc. Edinburgh Sect. A 97, 21–34 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Busenberg, S., Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124(1), 80–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Lou, Y., Wei, J.: Hopf bifurcation in a delayed reaction–diffusion–advection population model. J. Differ. Equ. 264(8), 5333–5359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253(12), 3440–3470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Yu, J.: Stability and bifurcations in a nonlocal delayed reaction–diffusion population model. J. Differ. Equ. 260(1), 218–240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S., Shi, J.: Global dynamics of the diffusive Lotka–Volterra competition model with stage structure. Calc. Var. Part. Differ. Equ. 59(1), 33, 19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S., Wei, J.: Stability and bifurcation in a diffusive logistic population model with multiple delays. Internat. J. Bifur. Chaos Appl. Sci. Eng. 25(8), 1550107, 9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37(1), 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Y., Hsu, S.-B.: A diffusive predator–prey model in heterogeneous environment. J. Differ. Equ. 203(2), 331–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Y., Niu, B., Guo, Y., Wei, J.: Double Hopf bifurcation in delayed reaction–diffusion systems. J. Dyn. Differ. Equ. 32(1), 313–358 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Y., Shi, J.: Allee effect and bistability in a spatially heterogeneous predator–prey model. Trans. Am. Math. Soc. 359(9), 4557–4593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254(2), 433–463 (2001)

  14. Guo, S.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259(4), 1409–1448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, S.: Patterns in a nonlocal time-delayed reaction–diffusion equation. Z. Angew. Math. Phys. 69(1), 1–31 (2018)

  16. Guo, S., Yan, S.: Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect. J. Differ. Equ. 260(1), 781–817 (2016)

  17. He, X., Lam, K.-Y., Lou, Y., Ni, W.-M.: Dynamics of a consumer-resource reaction–diffusion model. J. Math. Biol. 78(6), 1605–1636 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka–Volterra competition-diffusion system I: Heterogeneity vs. homogeneity. J. Differ. Equ. 254(2), 528–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, X., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69(5), 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, G.-P., Li, W.-T.: Hopf bifurcation analysis for a delayed predator–prey system with diffusion effects. Nonlinear Anal. Real World Appl. 11(2), 819–826 (2010)

  21. Huang, D., Chen, S.: The stability and Hopf bifurcation of the diffusive Nicholson’s blowflies model in spatially heterogeneous environment. Z. Angew. Math. Phys. 72(1), 41, 24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, Y., Li, F., Shi, J.: Stability of synchronized steady state solution of diffusive Lotka–Volterra predator–prey model. Appl. Math. Lett. 105, 106331, 5 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korman, P.: Dynamics of the Lotka–Volterra systems with diffusion. Appl. Anal. 44(3–4), 191–207 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in heterogeneous competition-diffusion systems. SIAM J. Appl. Math. 72(6), 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, S., Wu, J.: Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator–prey system. J. Differ. Equ. 265(8), 3754–3791 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z., Dai, B.: Stability and Hopf bifurcation analysis in a Lotka–Volterra competition-diffusion-advection model with time delay effect. Nonlinearity 34(5), 3271–3313 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z., Dai, B., Han, R.: Hopf bifurcation in a reaction–diffusion–advection two species model with nonlocal delay effect. J. Dyn. Differ. Equ. 1–34 (2021)

  28. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223(2), 400–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lou, Y., Wang, B.: Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment. J. Fixed Point Theory Appl. 19(1), 755–772 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, L., Feng, Z.: Stability and bifurcation in a two-species reaction–diffusion–advection competition model with time delay. Nonlinear Anal. Real World Appl. 61, 103327 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma, L., Guo, S.: Stability and bifurcation in a diffusive Lotka–Volterra system with delay. Comput. Math. Appl. 72(1), 147–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, L., Xie, X.: Bifurcation analysis of coexistent state in a delayed two-species predator–prey model. Appl. Anal. 99(7), 1195–1217 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ni, W.-M.: The Mathematics of Diffusion. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

    Book  MATH  Google Scholar 

  34. Ruan, S.: On nonlinear dynamics of predator–prey models with discrete delay. Math. Model. Nat. Phenom. 4(2), 140–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, J., Wang, C., Wang, H.: Diffusive spatial movement with memory and maturation delays. Nonlinearity 32(9), 3188–3208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi, Q., Shi, J., Song, Y.: Hopf bifurcation in a reaction–diffusion equation with distributed delay and Dirichlet boundary condition. J. Differ. Equ. 263(10), 6537–6575 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247(4), 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, X., Yuan, R.: Hopf bifurcation in a diffusive population system with nonlocal delay effect. Nonlinear Anal. 214(1), 112544, 21 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Sun, X., Yuan, R., Wang, L.: Bifurcations in a diffusive predator–prey model with Beddington–DeAngelis functional response and nonselective harvesting. J. Nonlinear Sci. 29(1), 287–318 (2019)

  41. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Applied Mathematical Sciences, vol. 119. Springer, New York (1996)

    Book  MATH  Google Scholar 

  42. Yan, X.-P., Li, W.-T.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23(6), 1413–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, X.-P., Li, W.-T.: Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete Contin. Dyn. Syst. Ser. B 17(1), 367–399 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Yang, R., Nie, C., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator–prey system with habitat complexity. Nonlinear Dyn. 110, 879–900 (2022)

    Article  Google Scholar 

  45. Zuo, W., Wei, J.: Stability and Hopf bifurcation in a diffusive predator–prey system with delay effect. Nonlinear Anal. Real World Appl. 12(4), 1998–2011 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers for their thoughtful and valuable comments which greatly improve the original manuscript. They also thank Professor Shanshan Chen for her helpful suggestions on the manuscript.

Funding

This research is supported by National Natural Science Foundation of China (Nos. 12171117 and 11771109).

Author information

Authors and Affiliations

Authors

Contributions

H. Zhang and J. Wei wrote the main manuscript text, and H. Zhang prepared figures 1–4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Junjie Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this subsection, we study the stability change of the positive steady state \(U_{\lambda }\) when \(\tau \) and r are proportional. Without loss of generality, we let \(\tau =\delta r\), where \(\delta >0\) is a fixed positive constant. The method used is similar to that in Sect. 3. In this case, the infinitesimal generator of the solution semigroup of (3.4) can be defined by

$$\begin{aligned} \mathfrak {A}_{\lambda }(r)\psi =\dot{\psi }, \end{aligned}$$

with

$$\begin{aligned} \mathcal {D}(\mathfrak {A}_{\lambda }(r))=\left\{ \psi \in C_{\mathbb {C}}\cap C_{\mathbb {C}}^{1}:\dot{\psi }(0) =A_{\lambda }\psi (0)-B_{\lambda }\psi (-\delta r)+C_{\lambda }\psi (-r) \right\} , \end{aligned}$$

and \(C_{\mathbb {C}}=C([-\max \{\delta r,r\},0],X^{2}_{\mathbb {C}})\), \(C_{\mathbb {C}}^{1}=C^{1}([-\max \{\delta r,r\},0],X^{2}_{\mathbb {C}})\). Then, the spectrum of \(\mathfrak {A}_{\lambda }(r)\) is

$$\begin{aligned} \sigma (\mathfrak {A}_{\lambda }(r))=\{\mu \in \mathbb {C}:\Pi (\lambda ,\mu ,r)\psi =0~\text {for some}~\psi \in X_{\mathbb {C}}^{2}\setminus \{\textbf{0}\}\}, \end{aligned}$$

where

$$\begin{aligned} \Pi (\lambda ,\mu ,r)\psi =A_{\lambda }\psi -B_{\lambda }\psi e^{-\mu \delta r}+C_{\lambda }\psi e^{-\mu r}-\mu \psi =0. \end{aligned}$$
(4.2)

We first analyze whether \(\mathfrak {A}_{\lambda }(r)\) has purely imaginary eigenvalues when \(r>0\) and \(\bar{a}_{1}\bar{a}_{4}<\bar{a}_{2}\bar{a}_{3}\). Similar to the case where \(\tau \) is fixed and r changes, set \(\mu =\pm \textrm{i}\omega (\omega >0)\), \(\omega =\lambda h\), \(\theta =\omega r\), and ignore a scale factor, take \(\psi =(\psi _1,\psi _2)^T\), where

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\psi _{1}=s+\lambda z_{1}, ~\psi _{2}=R_{1}+\textrm{i}R_{2}+\lambda z_{2},\\ &{}\Vert \psi _{1}\Vert _2^2+\Vert \psi _{2}\Vert _2^2=|\Omega |,\\ &{}s\ge 0,~R_{i}\in \mathbb {R},~\text {and}~z_{i}\in (X_{1})_{\mathbb {C}},~i=1,2. \end{array}\right. } \end{aligned}$$
(4.3)

Then, (4.2) becomes

$$\begin{aligned} \begin{aligned} \check{g}_{1}(z_{1},z_{2},s,R_{1},R_{2},h,\theta ,\lambda )&=\Delta z_{1}+[r_{1}(x)-2a_{1}(x)u_{\lambda }-a_{2}(x)v_{\lambda }](s+\lambda z_{1})\\ {}&-a_{2}(x)u_{\lambda }e^{-\text {i}\delta \theta }(R_{1}+\text {i}R_{2}+\lambda z_{2})-\text {i}h(s+\lambda z_{1})=0,\\ \check{g}_{2}(z_{1}, z_{2},s,R_{1},R_{2},h,\theta ,\lambda )&=d\Delta z_{2}+[-r_{2}(x)+a_{3}(x)u_{\lambda }-2a_{4}(x)v_{\lambda }](R_{1}+\text {i}R_{2}+\lambda z_{2})\\ {}&+a_{3}(x)v_{\lambda }e^{-\text {i}\theta }(s+\lambda z_{1})-\text {i}h(R_{1}+\text {i}R_{2}+\lambda z_{2})=0,\\ \check{g}_{3}(z_{1}, z_{2},s,R_{1},R_{2},h,\theta ,\lambda )&=(s^2+R_1^2+R_2^2)|\Omega |-|\Omega |+\lambda ^2(\Vert z_1\Vert _2^2+\Vert z_2\Vert _2^2 )=0. \end{aligned} \end{aligned}$$

Define \(\check{G}:(X_{1})_{\mathbb {C}}^{2}\times \mathbb {R}^{6}\mapsto Y_{\mathbb {C}}^{2}\times \mathbb {R}\) as \(\check{G}=(\check{g}_{1},\check{g}_{2},\check{g}_{3})\). If

$$\begin{aligned} {\left\{ \begin{array}{ll} \check{G}(z_{1},z_{1},s,R_{1},R_{2},h,\theta ,\lambda )=0,\\ z_{1},z_{2}\in (X_{1})_{\mathbb {C}}, s\ge 0, R_{1},R_{2}\in \mathbb {R}, h>0, \theta \in (0,2\pi ] \end{array}\right. } \end{aligned}$$
(4.4)

is solvable, then \(\mathfrak {A}_{\lambda }(r)\) has purely imaginary eigenvalues \(\mu =\textrm{i}\omega =\textrm{i} \lambda h\). Using similar arguments as in Lemma 3.2 and Theorem 3.3, we have the following result.

Theorem 4.1

Suppose that (2.2) holds, and \(\bar{a}_{1}\bar{a}_{4}<\bar{a}_{2}\bar{a}_{3}\). Then, there exists \(0<\check{\lambda }\ll 1\), and a continuously differential mapping \(\lambda \mapsto (\check{z}_{1\lambda }, \check{z}_{2\lambda },\check{s}_{\lambda },\check{R}_{1\lambda },\check{R}_{2\lambda }, \check{h}_{\lambda },\check{\theta }_{\lambda })\) from \([0,\check{\lambda }]\) to \((X_{1})^{2}_{\mathbb {C}}\times \mathbb {R}^{5}\), such that (4.4) has a unique solution \((\check{z}_{1\lambda }, \check{z}_{2\lambda },\check{s}_{\lambda },\check{R}_{1\lambda },\check{R}_{2\lambda }, \check{h}_{\lambda },\check{\theta }_{\lambda })\). Moreover, when \(\lambda =0\),

$$\begin{aligned} \begin{aligned}&\check{h}_{0}=\left[ \frac{-(\bar{a}_{4}^{2}c_{0}^{2}+\bar{a}_{1}^{2}\beta _{0}^{2})+\sqrt{(\bar{a}_{4}^{2}c_{0}^{2}-\bar{a}_{1}^{2}\beta _{0}^{2})^{2} +4(\bar{a}_{2}\bar{a}_{3}\beta _{0}c_{0})^{2}}}{2|\Omega |^2}\right] ^{1/2},\\&\cos [(1+\delta )\check{\theta }_{0}]=\frac{\check{h}_{0}^{2}|\Omega |^2-\bar{a}_{1}\bar{a}_{4}\beta _{0}c_{0}}{\bar{a}_{2}\bar{a}_{3}\beta _{0}c_{0}}, ~\sin [(1+\delta )\check{\theta }_{0}]=\frac{\check{h}_{0}|\Omega |(\bar{a}_{4}c_{0}+\bar{a}_{1}\beta _{0})}{\bar{a}_{2}\bar{a}_{3}\beta _{0}c_{0}},\\&\check{s}_0=\frac{\bar{a}_2\beta _0}{\sqrt{(\bar{a}_1^2+\bar{a}_2^2)\beta _0^2+\check{h}_0^2|\Omega |^2}} =\sqrt{\frac{\bar{a}_4^2c_0^2+\check{h}_0^2|\Omega |^2}{(\bar{a}_3^2+\bar{a}_4^2)c_0^2+\check{h}_0^2|\Omega |^2}},\\&\check{R}_{10}=\frac{\check{h}_0|\Omega |\sin (\delta \check{\theta }_0)-\bar{a}_1\beta _0\cos (\delta \check{\theta }_0)}{\sqrt{(\bar{a}_1^2+\bar{a}_2^2)\beta _0^2+\check{h}_0^2|\Omega |^2}},~ \check{R}_{20}=\frac{-\left[ h_0|\Omega |\cos (\delta \check{\theta }_0)+\bar{a}_1\beta _0\sin (\delta \check{\theta }_0)\right] }{\sqrt{(\bar{a}_1^2+\bar{a}_2^2)\beta _0^2+\check{h}_0^2|\Omega |^2}}, \end{aligned} \end{aligned}$$
(4.5)

and \((\check{z}_{10},\check{z}_{20})\) uniquely solves the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta z_{1}=-[r_{1}(x)-2a_{1}(x)\beta _{0}-a_{2}(x)c_{0}-\textrm{i}\check{h}_{0}]s_0+a_{2}(x)\beta _{0}e^{-\textrm{i}\delta \check{\theta }_{0}}(\check{R}_{10}+\textrm{i}\check{R}_{20}),\\ d\Delta z_{2}=-[-r_{2}(x)+a_{3}(x)\beta _{0}-2a_{4}(x)c_{0}-\textrm{i}\check{h}_{0}](\check{R}_{10}+\textrm{i}\check{R}_{20}) -a_{3}(x)c_{0}\check{s}_0e^{-\textrm{i}\check{\theta }_{0}}. \end{array}\right. } \end{aligned}$$

As a consequence of Theorem 4.1, we obtain the existence of purely imaginary eigenvalues of \(\mathfrak {A}_{\lambda }(r)\) as follows.

Theorem 4.2

Suppose that (2.2) holds, and \(\bar{a}_{1}\bar{a}_{4}<\bar{a}_{2}\bar{a}_{3}\). Then for \(\lambda \in (0,\check{\lambda }]\) with \(0<\check{\lambda }\ll 1\), \(\Pi (\lambda ,\textrm{i}\omega ,r)\psi =0\) with \(\omega >0\), \(r>0\) and \(\psi \in X^2_\mathbb {C}\setminus \{\textbf{0}\}\) if and only if

$$\begin{aligned} \begin{aligned} \omega&=\check{\omega }_{\lambda }=\lambda \check{h}_{\lambda }, ~r=\check{r}_{\lambda ,n}=\frac{\check{\theta }_{\lambda }+2n\pi }{\check{\omega }_{\lambda }},~n=0,1,2,\cdots .\\ ~\psi&=\check{a}\psi _{\lambda }=\check{a}\left( \begin{array}{c} \check{s}_{\lambda }+\lambda \check{z}_{1\lambda } \\ \check{R}_{1\lambda }+\textrm{i}\check{R}_{2\lambda }+\lambda \check{z}_{2\lambda } \\ \end{array} \right) , \end{aligned} \end{aligned}$$

where \(\check{a}\) is a nonzero constant. \(\check{z}_{i\lambda }\), \(\check{s}_{\lambda }\), \(\check{R}_{i\lambda }\), \(\check{h}_{\lambda }\), \(\check{\theta }_{\lambda }\), \(i=1,2\) are defined in Theorem 4.1.

Similarly in Theorems 3.7 and 3.8, we can obtain the simplicity of \(\textrm{i}\check{\omega }_{\lambda }\) and the transversality condition. From Lemma 3.10, we know that there exists \(0<\check{\lambda }\ll 1\) such that when \(\bar{a}_{1}\bar{a}_{4}\le \bar{a}_{2}\bar{a}_{3}\) and \(r=0\), all eigenvalues of \(\mathfrak {A}_{\lambda }(r)\) have negative real parts for \(\lambda \in (0,\check{\lambda }]\). Moreover, similar to Lemma 3.9, we can verify that when \(\bar{a}_{1}\bar{a}_{4}>\bar{a}_{2}\bar{a}_{3}\), all real parts of eigenvalues of \(\mathfrak {A}_{\lambda }(r)\) are negative for any \(r\ge 0\) and \(\lambda \in (0,\check{\lambda }]\) for sufficiently small \(\check{\lambda }\). Thus, we have the similar result to Theorem 3.11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wei, J. Hopf bifurcation analysis in a diffusive predator–prey system with spatial heterogeneity and delays. Z. Angew. Math. Phys. 74, 98 (2023). https://doi.org/10.1007/s00033-023-01990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01990-2

Keywords

Mathematics Subject Classification

Navigation