Skip to main content
Log in

Stability analysis in extensible thermoelastic beam with microtemperatures

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article we derive the equations that constitute the nonlinear mathematical model of one-dimensional extensible elastic beam with temperature and microtemperatures effects. The nonlinear governing equations are derived by applying the Hamilton principle to full von Kármán equations in the framework of Euler-Bernoulli beam theory. The model takes account of the effects of extensiblity and rotational inertia where the dissipations are entirely contributed by temperature and microtemperatures. Based on semigroups theory, we establish existence and uniqueness of weak and strong solutions to the derived problem. Then, using the multiplier method, we show that the solutions decay exponentially if (4.1) holds. Finally we consider the case of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce exponential stability if (4.1) holds. By an approach based on the Gearhart-Herbst-Prüss-Huang theorem, we prove that the linear (without extensiblity) associated semigroup is not analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M., Guerine, S.: Decay in full von Kármán beam with temperature and microtemperatures effects. Math. Model. Nat. Phenom. 18, 3 (2023)

    Article  MATH  Google Scholar 

  2. Aouadi, M.: Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures. J. Math. Anal. Appl. 5141, 126268 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aouadi, M., Passarella, F., Tibullo, V.: Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III. Proc. R. Soc. A 476, 20200459 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aouadi, M., Ben Bettaieb, M., Abed-Meraim, F.: Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures. Z. Angew. Math. Mech 101, 11 (2021)

    Article  MathSciNet  Google Scholar 

  5. Apalara, T.A.: On the stability of porous-elastic system with microtemparatures. J. Therm. Stress. 42, 265–278 (2019)

    Article  Google Scholar 

  6. Casas, P., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43, 33–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dridi, H., Djebabla, A.: On the stabilization of linear porous elastic materials by microtemperature effect and porous damping. Ann. Univ. Ferrara 2, 13–25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ieşan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Therm. Stress. 23, 199–215 (2000)

    Article  MathSciNet  Google Scholar 

  9. Ieşan, D., Quintanilla, R.: On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354, 12–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ieşan, D., Quintanilla, R.: Qualitative properties in strain gradient thermoelasticity with microtemperatures. Math. Mech. Solids 23, 240–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khochemane, H.E.: Exponential stability for a thermoelastic porous system with microtemperatures effects. Acta Appl. Math. 173, 1–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Magaña, A., Quintanilla, R.: Exponential stability in type III thermoelasticity with microtemperatures. Z. Angew. Math. Phy. 69, 129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: Analyticity in porous-thermoelasticity with microtemperatures. J. Math. Anal. Appl. 394, 645–655 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saci, M., Khochemane, H.E., Djebabla, A.: On the stability of linear porous elastic materials with microtemperatures effects and frictional damping. Appl. Anal. 101, 2922–2936 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saci, M., Djebabla, A.: On the stability of linear porous elastic materials with microtemperatures effects. J. Therm. Stress. 43, 1300–1315 (2020)

    Article  Google Scholar 

  16. Yang, Z., Zhang, Y., Itoh, T., Maeda, R.: Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J. Micro. Syst. 23, 21–29 (2014)

    Article  Google Scholar 

  17. Wozniak, Cz.: Thermoelasticity of the bodies with microstructure. Arch. Mech. Stos 19, 335 (1967)

    MATH  Google Scholar 

  18. Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801 (1969)

    Article  MATH  Google Scholar 

  19. Giorgi, C., Pata, V., Vuk, E.: On the extensible viscoelastic beam. Nonlinearity 21, 713–733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giorgi, C., Naso, M.G.: Modeling and steady state analysis of the extensible thermoelastic beam. Math. Comput. Model. 53, 896–908 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giorgi, C., Naso, M.G., Pata, V., Potomkin, M.: Global attractors for the extensible thermoelastic beam system. J. Differ. Equ. 246, 3496–3517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bochicchio, I., Giorgi, C., Vuk, E.: Steady states analysis and exponential stability of an extensible thermoelastic system. Commun. SIMAI Congr. (2009). https://doi.org/10.1685/CSC09232

    Article  Google Scholar 

  23. Grobbelaar-Van Dalsen, M.: Uniform stabilization of a one-dimensional hybrid thermo-elastic structure. Math. Models Appl. Sci 19, 943–957 (1996)

    MATH  Google Scholar 

  24. Berti, A., Copetti, M.I.M., Fernández, J.R., Naso, M.G.: Analysis of dynamic nonlinear thermoviscoelastic beam problems. Nonlinear Anal. 95, 774–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Berti, A., Copetti, M.I.M., Fernández, J.R., Naso, M.G.: A dynamic thermoviscoelastic contact problem with the second sound effect. J. Math. Anal. Appl. 421, 1163–1195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barbosa, A., Ma, T.F.: Long-time dynamics of an extensible plate equation with thermal memory. J. Math. Anal. Appl. 416, 143–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dell’Oro, F., Pata, V.: Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evol. Equ. Control Theory 1, 251–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Benabdallah, A., Teniou, D.: Exponential stability of a von Karman model with thermal effects. Elect. J. Diff. Equ. 7, 1–13 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Lagnese, J.E., Leugering, G.: Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Diff. Equ. 91, 355–388 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chadwick, P.: On the propagation of thermoelastic disturbances in thin plates and rods. J. Mech. Phys. Solids 10, 99–109 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carlson, D.E.: Linear thermoelasticity, In: Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin, 297–345 (1972)

  32. Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  34. Potomkin, M.: A nonlinear transmission problem for a compound plate with thermoelastic part. Math. Meth. Appl. Sci. 35, 530–546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Huang, F.L.: Characteristic condition for exponential stability of linear dynamical systems in hilbert spaces. Ann. Diff. Eqs. 1, 43 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, Vol. 398, Res. Notes Math., Chapman & Hall/CRC, Bocca Raton, FL (1999)

Download references

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author, MA, is the sole author of this contribution

Corresponding author

Correspondence to Moncef Aouadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M. Stability analysis in extensible thermoelastic beam with microtemperatures. Z. Angew. Math. Phys. 74, 86 (2023). https://doi.org/10.1007/s00033-023-01979-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01979-x

Keywords

Mathematics Subject Classification

Navigation