Skip to main content
Log in

Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Cauchy problem related to the standard linear solid model with thermoelasticity of type III in the whole space. By using semigroup theory, we first establish the well-posedness result under certain assumptions on the parameters. By applying the energy method in the Fourier space, we then prove the optimal decay estimate results for both the non-critical and critical cases. Specifically, the decay property of the system is not of the regularity-loss type. In addition, we study the asymptotic expansion of the eigenvalues to analyze the optimality of the decay results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, M.S., et al.: Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect. J. Math. Anal. Appl. 399(2), 472–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, M.O., et al.: Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach. Z. Angew. Math. Phys. 69(4), 106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apalara, T.A., Messaoudi, S.A., Al-Smail, J.H.: A stability result for the vibrations given by the standard linear model with thermoelasticity of type III. Appl. Anal. 97(10), 1688–1700 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, S.K., Gorain, G.C.: Stability of the boundary stabilised internally damped wave equation \(y^{\prime \prime }+\lambda y^{\prime \prime \prime }=c^2(\Delta y+\mu \Delta y^{\prime })\) in a bounded domain in \({ R}^n\). Indian J. Math. 40(1), 1–15 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Boulanouar, F., Drabla, S.: General boundary stabilization result of memory-type thermoelasticity with second sound. Electron. J. Differ. Equ. 2014(202), 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bounadja, H., Khader, M.: Optimal decay rate for the Cauchy problem of the standard linear solid model with Gurtin–Pipkin thermal law. J. Math. Anal. Appl. 509(2), 125844 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalcanti, M.M., Guesmia, A.: General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type. Differ. Integr. Equ. 18(5), 583–600 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Dell’Oro, F., Lasiecka, I., Pata, V.: The Moore–Gibson–Thompson equation with memory in the critical case. J. Differ. Equ. 261(7), 4188–4222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gorain, G.C.: Stabilization for the vibrations modeled by the ‘standard linear model’ of viscoelasticity. Proc. Indian Acad. Sci. Math. Sci. 120(4), 495–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timoshenko system. Math. Models Methods Appl. Sci. 18(5), 647–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jordan, P.: Nonlinear acoustic phenomena in viscous thermally relaxing fluids: shock bifurcation and the emergence of diffusive solitons. In: Lecture at the 9th International Conference on Theoretical and Computational Acoustics (ICTCA 2009), Dresden, Germany, Sep. 9 (2009)

  12. Kaltenbacher, B., Lasiecka, I.: Exponential decay for low and higher energies in the third order linear Moore–Gibson–Thompson equation with variable viscosity. Palest. J. Math. 1(1), 1–10 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Well-posedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control Cybernet. 40(4), 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Oberwolfach Semin., vol. 48, pp. 269–307. Birkhäuser/Springer, Cham

  15. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Differ. Equ. 259(12), 7610–7635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy. Z. Angew. Math. Phys. 67(2), 17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Chen, Z.: General decay rate for a Moore–Gibson–Thompson equation with infinite history. Z. Angew. Math. Phys. 71(2), 43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W., Chen, Z., Chen, D.: New general decay results for a Moore–Gibson–Thompson equation with memory. Appl. Anal. 99(15), 2622–2640 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, W., Chen, Z., Tu, Z.: New general decay result for a fourth-order Moore–Gibson–Thompson equation with memory. Electron. Res. Arch. 28(1), 433–457 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Kawashima, S.: Decay property for a plate equation with memory-type dissipation. Kinet. Relat. Models 4(2), 531–547 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, J.-R., Xiao, T.-J.: Optimal energy decay rates for abstract second order evolution equations with non-autonomous damping. ESAIM Control Optim. Calc. Var. 27, 59 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mao, S., Liu, Y.: Decay property for solutions to plate type equations with variable coefficients. Kinet. Relat. Models 10(3), 785–797 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mori, N., Kawashima, S.: Decay property for the Timoshenko system with Fourier’s type heat conduction. J. Hyperbolic Differ. Equ. 11(1), 135–157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mori, N., Racke, R.: Global well-posedness and polynomial decay for a nonlinear Timoshenko–Cattaneo system under minimal Sobolev regularity. Nonlinear Anal. 173, 164–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

  26. Pellicer, M., Said-Houari, B.: Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Appl. Math. Optim. 80(2), 447–478 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pellicer, M., Said-Houari, B.: On the Cauchy problem of the standard linear solid model with Fourier heat conduction. Z. Angew. Math. Phys. 72(3), 115 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pellicer, M., Said-Houari, B.: On the Cauchy problem of the standard linear solid model with Cattaneo heat conduction. Asymptot. Anal. 126(1–2), 95–127 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Racke, R., Said-Houari, B.: Global well-posedness of the Cauchy problem for the Jordan –Moore– Thompson equation. Commun. Contemp. Math. 23(7) , 2050069 (2021)

  30. Said-Houari, B., Kasimov, A.: Decay property of Timoshenko system in thermoelasticity. Math. Methods Appl. Sci. 35(3), 314–333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Said-Houari, B., Kasimov, A.: Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same. J. Differ. Equ. 255(4), 611–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Said-Houari, B., Rahali, R.: Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evol. Equ. Control Theory 2(2), 423–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ueda, Y., Duan, R., Kawashima, S.: Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application. Arch. Ration. Mech. Anal. 205(1), 239–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, D., Liu, W.: Well-posedness and decay property of regularity-loss type for the Cauchy problem of the standard linear solid model with Gurtin–Pipkin thermal law. Asymptot. Anal. 123(1–2), 181–201 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Xu, J., Mori, N., Kawashima, S.: Global existence and minimal decay regularity for the Timoshenko system: the case of non-equal wave speeds. J. Differ. Equ. 259(11), 5533–5553 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (No. 12271261), the Key Research and Development Program of Jiangsu Province (Social Development) (No. BE2019725), and the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, W. & Chen, K. Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III. Z. Angew. Math. Phys. 74, 70 (2023). https://doi.org/10.1007/s00033-023-01964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01964-4

Keywords

Mathematics Subject Classification

Navigation